找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Probability and Statistics in Experimental Physics; Byron P. Roe Textbook 19921st edition Springer-Verlag New York 1992 Monte Carlo method

[復(fù)制鏈接]
樓主: 孵化
31#
發(fā)表于 2025-3-26 21:17:01 | 只看該作者
Methods for Estimating Parameters. Least Squares and Maximum Likelihood, developed for these problems and, in many cases, the estimation process can be automated and turned into almost a crank-turning operation. Nonetheless, as we will see, it is very important to understand in detail what we are doing.
32#
發(fā)表于 2025-3-27 02:43:29 | 只看該作者
Curve Fitting,urn the procedure into a crank-turning procedure. If the dependence on the parameters is intrinsically non-linear, we will see that the problem is much harder, but general computer programs to find minima of multidimensional functions can be of considerable help.
33#
發(fā)表于 2025-3-27 07:41:16 | 只看該作者
Bartlett , Function; Estimating Likelihood Ratios Needed for an Experiment,also it is sometimes hard to interpret the non-gaussian errors which result. The use of the Bartlett . function is a technique to introduce new variables to make the distribution function closer to normal.
34#
發(fā)表于 2025-3-27 12:34:09 | 只看該作者
35#
發(fā)表于 2025-3-27 16:22:00 | 只看該作者
Beyond Maximum Likelihood and Least Squares; Robust Methods, of the points on a curve, for example, are not normal and have long tails, then, as we noted in Chapter 13, estimates of goodness of fit may be seriously biased. The tests discussed in this chapter tend to be robust, with results which are independent of the particular distribution being tested.
36#
發(fā)表于 2025-3-27 18:11:51 | 只看該作者
https://doi.org/10.1007/978-1-4757-2186-7Monte Carlo method; Parameter; experiment; experimental physics; normal distribution; statistics
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞阳县| 静乐县| 军事| 宜宾县| 凤冈县| 牡丹江市| 金乡县| 当雄县| 西盟| 深州市| 白山市| 玉山县| 黄梅县| 双桥区| 安仁县| 寻乌县| 新营市| 六枝特区| 皮山县| 老河口市| 南澳县| 丰镇市| 花莲市| 澄迈县| 长春市| 滁州市| 富川| 丹江口市| 五常市| 文山县| 舟山市| 双牌县| 芒康县| 黔西| 桂东县| 应用必备| 贡山| 苏尼特左旗| 张家川| 永吉县| 祁门县|