找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Probability Essentials; Jean Jacod,Philip Protter Textbook 20001st edition Springer-Verlag Berlin Heidelberg 2000 Brownian motion.Martinga

[復(fù)制鏈接]
查看: 9013|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:11:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Probability Essentials
編輯Jean Jacod,Philip Protter
視頻videohttp://file.papertrans.cn/757/756867/756867.mp4
概述In the words of one reviewer: "Normally graduate students need two books, one on measure theory and one on probability theory..This book contains (most of) the essentials of both fields and students c
叢書名稱Universitext
圖書封面Titlebook: Probability Essentials;  Jean Jacod,Philip Protter Textbook 20001st edition Springer-Verlag Berlin Heidelberg 2000 Brownian motion.Martinga
描述We present here a one-semester course on Probability Theory. We also treat measure theory and Lebesgue integration, concentrating on those aspects which are especially germane to the study of Probability Theory. The book is intended to fill a current need: there are mathematically sophisticated stu- dents and researchers (especially in Engineering, Economics, and Statistics) who need a proper grounding in Probability in order to pursue their primary interests. Many Probability texts available today are celebrations of Prob- ability Theory, containing treatments of fascinating topics to be sure, but nevertheless they make it difficult to construct a lean one semester course that covers (what we believe are) the essential topics. Chapters 1-23 provide such a course. We have indulged ourselves a bit by including Chapters 24-28 which are highly optional, but which may prove useful to Economists and Electrical Engineers. This book had its origins in a course the second author gave in Perugia, Italy, in 1997; he used the samizdat "notes" of the first author, long used for courses at the University of Paris VI, augmenting them as needed. The result has been further tested at courses given
出版日期Textbook 20001st edition
關(guān)鍵詞Brownian motion; Martingal; Martingale; Martingales; Random variable; central limit theorem; conditional p
版次1
doihttps://doi.org/10.1007/978-3-642-51431-9
isbn_ebook978-3-642-51431-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 2000
The information of publication is updating

書目名稱Probability Essentials影響因子(影響力)




書目名稱Probability Essentials影響因子(影響力)學(xué)科排名




書目名稱Probability Essentials網(wǎng)絡(luò)公開度




書目名稱Probability Essentials網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Probability Essentials被引頻次




書目名稱Probability Essentials被引頻次學(xué)科排名




書目名稱Probability Essentials年度引用




書目名稱Probability Essentials年度引用學(xué)科排名




書目名稱Probability Essentials讀者反饋




書目名稱Probability Essentials讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:37:12 | 只看該作者
Convergence of Random Variables,is is called . A random variable is of course a function (.:Ω → . for an abstract space .), and thus we have the same notion: a sequence . → . . lim. .(.), for all .. This natural definition is surprisingly useless in probability. The next example gives an indication why.
地板
發(fā)表于 2025-3-22 06:20:00 | 只看該作者
5#
發(fā)表于 2025-3-22 11:56:47 | 只看該作者
https://doi.org/10.1007/978-3-642-51431-9Brownian motion; Martingal; Martingale; Martingales; Random variable; central limit theorem; conditional p
6#
發(fā)表于 2025-3-22 15:30:51 | 只看該作者
Springer-Verlag Berlin Heidelberg 2000
7#
發(fā)表于 2025-3-22 17:34:46 | 只看該作者
8#
發(fā)表于 2025-3-22 22:45:36 | 只看該作者
Conditional Probability and Independence,Let . and . be two events defined on a probability space. Let .(.) denote the number of times . occurs divided by .. Intuitively, as n gets large, .(.) should be close to .. Informally, we should have ..
9#
發(fā)表于 2025-3-23 03:39:28 | 只看該作者
Probabilities on a Countable Space,For Chapter 4, we assume . is countable, and we take . = 2. (the class of all subsets of .).
10#
發(fā)表于 2025-3-23 08:16:25 | 只看該作者
Construction of a Probability Measure,Here we no longer assume . is countable. We assume given . and a .-algebra . ? 2.. (., .) is called a . We want to construct probability measures on . When . is finite or countable we have already-seen this is simple to do. When . is uncountable, the same technique does not work; indeed, a “typical” probability . will have .({.}) = 0 for all .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 23:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中阳县| 江门市| 额尔古纳市| 天长市| 正镶白旗| 湖州市| 安达市| 南宁市| 泰宁县| 祁连县| 隆德县| 洪湖市| 内丘县| 五指山市| 辽宁省| 蒙阴县| 工布江达县| 舞钢市| 绥德县| 永定县| 麦盖提县| 高青县| 太保市| 沈丘县| 蓬安县| 宣武区| 辽阳市| 星子县| 互助| 葫芦岛市| 大新县| 盐津县| 应用必备| 信丰县| 本溪市| 宜兴市| 罗田县| 东明县| 钟山县| 蓬安县| 胶州市|