找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic Methods in Quantum Field Theory and Quantum Gravity; P. H. Damgaard,H. Hüffel,A. Rosenblum Book 1990 Springer Science+Busine

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 03:40:13 | 只看該作者
Geometric Continuum Regularization of Quantum Field Theorythe regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal non-perturbative invariant continuum regularization across all quantum field theory.
22#
發(fā)表于 2025-3-25 11:24:44 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:05:37 | 只看該作者
25#
發(fā)表于 2025-3-25 21:27:04 | 只看該作者
Simulation of Staggered Fermions by Polymer Algorithmseory is only possible if the fermion determinant is positive. Examples where the fermion determinant is complex are, for instance: QCD with non-zero chemical potential or simple scalar-fermion models with chiral Yukawa-couplings etc. Under these circumtances the search for alternative, possibly local, fermion algorithms is well motivated.
26#
發(fā)表于 2025-3-26 02:42:27 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:59 | 只看該作者
Some stochastic techniques in quantization, new developments in Markov fields and quantum fields been involved. We stress particularly developments involving techniques of stochastic analysis and where mathematical results have been obtained. By this we do not want at all to detract importance to more heuristic, physical approaches, on the contrary, we have been ourselves often inspired by suc
28#
發(fā)表于 2025-3-26 09:40:28 | 只看該作者
29#
發(fā)表于 2025-3-26 16:32:14 | 只看該作者
30#
發(fā)表于 2025-3-26 18:40:03 | 只看該作者
Quantization = Geometry + Probabilitythe classical phase space. It is shown that the integral of a phase factor involving the classical action over a pinned Wiener measure leads, in the limit of diverging diffusion constant, to an intrinsic, coordinate-free characterization of the quantization process for various kinematical operator c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐亭县| 乌兰察布市| 芮城县| 太白县| 清流县| 吐鲁番市| 安福县| 白银市| 华池县| 西和县| 永善县| 孝义市| 满城县| 措美县| 榆林市| 桂林市| 佛坪县| 永春县| 南丹县| 师宗县| 桃江县| 额济纳旗| 普洱| 利津县| 磐石市| 永仁县| 民权县| 静乐县| 昭觉县| 清苑县| 泸定县| 资兴市| 文山县| 金乡县| 宁陵县| 玉屏| 资溪县| 广东省| 克什克腾旗| 宜春市| 淅川县|