找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic Graphical Models; Principles and Appli Luis Enrique Sucar Textbook 2021Latest edition Springer Nature Switzerland AG 2021 Bay

[復(fù)制鏈接]
查看: 47917|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:11:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Probabilistic Graphical Models
副標(biāo)題Principles and Appli
編輯Luis Enrique Sucar
視頻videohttp://file.papertrans.cn/757/756795/756795.mp4
概述Includes exercises, suggestions for research projects, and example applications throughout the book.Presents the main classes of PGMs under a single, unified framework.Covers both the fundamental aspe
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Probabilistic Graphical Models; Principles and Appli Luis Enrique Sucar Textbook 2021Latest edition Springer Nature Switzerland AG 2021 Bay
描述.This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.? It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python..The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes..Topics and features:.Presents a unified framework encompassing all of the main classes of PGMs.Explores the fundamental aspects of representation, inference and learning for each technique.Examines new material on partially observable Markov decision processes, and graphical models.Include
出版日期Textbook 2021Latest edition
關(guān)鍵詞Bayesian Classifiers; Bayesian Networks; Decision Networks; Hidden Markov Models; Influence Diagrams; Lea
版次2
doihttps://doi.org/10.1007/978-3-030-61943-5
isbn_softcover978-3-030-61945-9
isbn_ebook978-3-030-61943-5Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Probabilistic Graphical Models影響因子(影響力)




書目名稱Probabilistic Graphical Models影響因子(影響力)學(xué)科排名




書目名稱Probabilistic Graphical Models網(wǎng)絡(luò)公開度




書目名稱Probabilistic Graphical Models網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Probabilistic Graphical Models被引頻次




書目名稱Probabilistic Graphical Models被引頻次學(xué)科排名




書目名稱Probabilistic Graphical Models年度引用




書目名稱Probabilistic Graphical Models年度引用學(xué)科排名




書目名稱Probabilistic Graphical Models讀者反饋




書目名稱Probabilistic Graphical Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:18:11 | 只看該作者
Graph Theoryition of directed and undirected graphs, some basic theoretical graph concepts are introduced, including types of graphs, trajectories and circuits, and graph isomorphism. A section is dedicated to trees, an important type of graph. Some more advanced theoretical graph aspects required for inference
地板
發(fā)表于 2025-3-22 06:52:39 | 只看該作者
Bayesian Classifiersl as its main variants: TAN and BAN. Then the semi-naive Bayesian classifier is described. A multidimensional classifier may assign several classes to the same object. Two alternatives for multidimensional classification are analyzed: the multidimensional Bayesian network classifier and the Bayesian
5#
發(fā)表于 2025-3-22 12:46:15 | 只看該作者
Hidden Markov Modelsns, this chapter focuses on hidden Markov models. The algorithms for solving the basic problems: . and . are presented. Next a description of Gaussian HMMs and several extensions to the basic HMM are given. The chapter concludes with two applications: the “PageRank” procedure used by Google and gest
6#
發(fā)表于 2025-3-22 15:39:29 | 只看該作者
Markov Random Fieldse how a Markov random field is represented, including its structure and parameters, with emphasis on regular MRFs. Then, a general stochastic simulation algorithm to find the . configuration of a MRF is described, including some of its main variants. The problem of parameter estimation for a MRF is
7#
發(fā)表于 2025-3-22 17:48:54 | 只看該作者
Bayesian Networks: Representation and Inferenceed, including the concept of D-Separation and the independence axioms. With respect to parameter specification, the two main alternatives for a compact representation are described, one based on canonical models and the other on graphical representations. Then the algorithms for probabilistic infere
8#
發(fā)表于 2025-3-22 23:22:39 | 只看該作者
Bayesian Networks: Learninghandle uncertainty in the parameters and missing data; it also includes the basic discretization techniques. After describing the techniques for learning tree and polytree BNs, the two main types of methods for structure learning are described: score and search, and independence tests. We then descr
9#
發(fā)表于 2025-3-23 01:49:26 | 只看該作者
10#
發(fā)表于 2025-3-23 06:47:38 | 只看該作者
Decision Graphsrees and their evaluation strategy. Thirdly, influence diagrams are introduced, including three alternative evaluation strategies: transformation to a decision tree, variable elimination and transformation to a Bayesian network. The chapter concludes with two application examples: a decision support
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 20:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和硕县| 左贡县| 景泰县| 右玉县| 监利县| 雷州市| 阿拉善左旗| 八宿县| 阜城县| 北票市| 梨树县| 若尔盖县| 汝阳县| 治多县| 邵东县| 和政县| 繁昌县| 甘谷县| 南开区| 天长市| 通城县| 永善县| 区。| 屏东市| 杭锦后旗| 桐梓县| 图片| 林西县| 淮南市| 靖宇县| 宝鸡市| 祥云县| 星子县| 阳西县| 汉川市| 壤塘县| 阳春市| 梁山县| 泰宁县| 庆元县| 洮南市|