找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Principal Component Analysis Networks and Algorithms; Xiangyu Kong,Changhua Hu,Zhansheng Duan Book 2017 Science Press, Beijing and Springe

[復制鏈接]
查看: 30546|回復: 35
樓主
發(fā)表于 2025-3-21 18:36:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Principal Component Analysis Networks and Algorithms
編輯Xiangyu Kong,Changhua Hu,Zhansheng Duan
視頻videohttp://file.papertrans.cn/756/755293/755293.mp4
概述Systemically summarizes neural based PCA methods with its extensions and generalizations.Presents novel neural based extensions/generalizations of PCA algorithms.Introduces many performance analysis m
圖書封面Titlebook: Principal Component Analysis Networks and Algorithms;  Xiangyu Kong,Changhua Hu,Zhansheng Duan Book 2017 Science Press, Beijing and Springe
描述This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no .a priori. knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.
出版日期Book 2017
關鍵詞PCA Algorithms; Principal Component Analysis; Feature Extraction; Generalized Feature Extraction; Neural
版次1
doihttps://doi.org/10.1007/978-981-10-2915-8
isbn_softcover978-981-10-9738-6
isbn_ebook978-981-10-2915-8
copyrightScience Press, Beijing and Springer Nature Singapore Pte Ltd. 2017
The information of publication is updating

書目名稱Principal Component Analysis Networks and Algorithms影響因子(影響力)




書目名稱Principal Component Analysis Networks and Algorithms影響因子(影響力)學科排名




書目名稱Principal Component Analysis Networks and Algorithms網絡公開度




書目名稱Principal Component Analysis Networks and Algorithms網絡公開度學科排名




書目名稱Principal Component Analysis Networks and Algorithms被引頻次




書目名稱Principal Component Analysis Networks and Algorithms被引頻次學科排名




書目名稱Principal Component Analysis Networks and Algorithms年度引用




書目名稱Principal Component Analysis Networks and Algorithms年度引用學科排名




書目名稱Principal Component Analysis Networks and Algorithms讀者反饋




書目名稱Principal Component Analysis Networks and Algorithms讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:55:40 | 只看該作者
第155293主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:09:07 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:37:50 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:53:50 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:39:44 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:19:00 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:33:16 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:01:06 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:09:11 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-11-1 01:53
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铜山县| 碌曲县| 浑源县| 册亨县| 黑河市| 西吉县| 陈巴尔虎旗| 大关县| 武定县| 清流县| 鄂温| 虞城县| 乐安县| 西乌珠穆沁旗| 福建省| 民丰县| 新乐市| 双峰县| 海安县| 北宁市| 福泉市| 鸡泽县| 许昌县| 深州市| 武威市| 崇明县| 华蓥市| 南开区| 三明市| 松原市| 西畴县| 锡林郭勒盟| 雷州市| 花莲市| 梨树县| 界首市| 罗城| 德惠市| 浪卡子县| 明水县| 安溪县|