找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Principal Component Analysis; I. T. Jolliffe Book 19861st edition Springer-Verlag New York 1986 Eigenvalue.Finite.Matrix.Statistica.comput

[復(fù)制鏈接]
查看: 37978|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:24:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Principal Component Analysis
編輯I. T. Jolliffe
視頻videohttp://file.papertrans.cn/756/755291/755291.mp4
叢書名稱Springer Series in Statistics
圖書封面Titlebook: Principal Component Analysis;  I. T. Jolliffe Book 19861st edition Springer-Verlag New York 1986 Eigenvalue.Finite.Matrix.Statistica.comput
描述Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen- sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of
出版日期Book 19861st edition
關(guān)鍵詞Eigenvalue; Finite; Matrix; Statistica; computation; computer; eigenvector; factor analysis; form; principal
版次1
doihttps://doi.org/10.1007/978-1-4757-1904-8
isbn_ebook978-1-4757-1904-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer-Verlag New York 1986
The information of publication is updating

書目名稱Principal Component Analysis影響因子(影響力)




書目名稱Principal Component Analysis影響因子(影響力)學(xué)科排名




書目名稱Principal Component Analysis網(wǎng)絡(luò)公開度




書目名稱Principal Component Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Principal Component Analysis被引頻次




書目名稱Principal Component Analysis被引頻次學(xué)科排名




書目名稱Principal Component Analysis年度引用




書目名稱Principal Component Analysis年度引用學(xué)科排名




書目名稱Principal Component Analysis讀者反饋




書目名稱Principal Component Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:21 | 只看該作者
第155291主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:56:24 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:11:38 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:30:22 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:24:55 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:17:58 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:53:54 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:10:45 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:26:14 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开原市| 会同县| 广平县| 蕉岭县| 平谷区| 工布江达县| 乐亭县| 灵武市| 桦川县| 大邑县| 金溪县| 句容市| 乐都县| 鹤岗市| 邓州市| 普兰店市| 万载县| 靖边县| 墨玉县| 苍山县| 辽中县| 沐川县| 长岭县| 六盘水市| 平远县| 诸暨市| 丽水市| 分宜县| 瑞丽市| 星子县| 东乡县| 湛江市| 都安| 平原县| 邛崃市| 博客| 龙南县| 铅山县| 高安市| 辽阳市| 土默特右旗|