找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Positive Operator Semigroups; From Finite to Infin András Bátkai,Marjeta Kramar Fijav?,Abdelaziz Rhan Textbook 2017 Springer International

[復(fù)制鏈接]
查看: 13329|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:37:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Positive Operator Semigroups
副標(biāo)題From Finite to Infin
編輯András Bátkai,Marjeta Kramar Fijav?,Abdelaziz Rhan
視頻videohttp://file.papertrans.cn/752/751846/751846.mp4
概述Demonstrates what positivity can do for an operator semigroup and how it affects the solution of an evolution equation.Develops finite dimensional theory in a coordinate-free way.Illustrates a rich se
叢書名稱Operator Theory: Advances and Applications
圖書封面Titlebook: Positive Operator Semigroups; From Finite to Infin András Bátkai,Marjeta Kramar Fijav?,Abdelaziz Rhan Textbook 2017 Springer International
描述This book?gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes.?.In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed.?.The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date b
出版日期Textbook 2017
關(guān)鍵詞Perron-Frobenius theory; asymptotic behaviour; evolution equations; operator semigroups; positivity; matr
版次1
doihttps://doi.org/10.1007/978-3-319-42813-0
isbn_softcover978-3-319-82670-7
isbn_ebook978-3-319-42813-0Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Positive Operator Semigroups影響因子(影響力)




書目名稱Positive Operator Semigroups影響因子(影響力)學(xué)科排名




書目名稱Positive Operator Semigroups網(wǎng)絡(luò)公開度




書目名稱Positive Operator Semigroups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Positive Operator Semigroups被引頻次




書目名稱Positive Operator Semigroups被引頻次學(xué)科排名




書目名稱Positive Operator Semigroups年度引用




書目名稱Positive Operator Semigroups年度引用學(xué)科排名




書目名稱Positive Operator Semigroups讀者反饋




書目名稱Positive Operator Semigroups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:08:01 | 只看該作者
第151846主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:21:00 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:22:46 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:22:39 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:26:10 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:57:03 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 01:07:56 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:44:45 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:03:21 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴塘县| 石棉县| 永福县| 洪江市| 新建县| 镶黄旗| 宜都市| 安义县| 介休市| 琼结县| 尉犁县| 上蔡县| 南丹县| 洪泽县| 二手房| 龙陵县| 吉安县| 吴忠市| 内乡县| 抚宁县| 玉山县| 浪卡子县| 正阳县| 靖边县| 通渭县| 鞍山市| 临朐县| 陆川县| 无极县| 柳河县| 兴城市| 宿州市| 华蓥市| 佛教| 太保市| 山东| 民乐县| 青铜峡市| 彩票| 炉霍县| 博乐市|