找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Positive 1D and 2D Systems; Tadeusz Kaczorek Book 2002 Springer-Verlag London 2002 1D Linear Systems.2D Linear Systems.Applied Mathematics

[復(fù)制鏈接]
查看: 40038|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:26:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Positive 1D and 2D Systems
編輯Tadeusz Kaczorek
視頻videohttp://file.papertrans.cn/752/751816/751816.mp4
概述Will give the reader tools for dealing with uncertainty in control systems which are more advanced and flexible than either traditional optimal control or robust control..Reduces the computational cos
叢書(shū)名稱(chēng)Communications and Control Engineering
圖書(shū)封面Titlebook: Positive 1D and 2D Systems;  Tadeusz Kaczorek Book 2002 Springer-Verlag London 2002 1D Linear Systems.2D Linear Systems.Applied Mathematics
描述In the last decade a dynamic development in positive systems has been observed. Roughly speaking, positive systems are systems whose inputs, state variables and outputs take only nonnegative values. Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A variety of models having positive linear system behaviour can be found in engineering, management science, economics, social sciences, biology and medicine, etc. The basic mathematical tools for analysis and synthesis of linear systems are linear spaces and the theory of linear operators. Positive linear systems are defined on cones and not on linear spaces. This is why the theory of positive systems is more complicated and less advanced. The theory of positive systems has some elements in common with theories of linear and non-linear systems. Schematically the relationship between the theories of linear, non-linear and positive systems is shown in the following figure Figure 1.
出版日期Book 2002
關(guān)鍵詞1D Linear Systems; 2D Linear Systems; Applied Mathematics; Control Systems Theory; Discrete-time systems
版次1
doihttps://doi.org/10.1007/978-1-4471-0221-2
isbn_softcover978-1-4471-1097-2
isbn_ebook978-1-4471-0221-2Series ISSN 0178-5354 Series E-ISSN 2197-7119
issn_series 0178-5354
copyrightSpringer-Verlag London 2002
The information of publication is updating

書(shū)目名稱(chēng)Positive 1D and 2D Systems影響因子(影響力)




書(shū)目名稱(chēng)Positive 1D and 2D Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Positive 1D and 2D Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Positive 1D and 2D Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Positive 1D and 2D Systems被引頻次




書(shū)目名稱(chēng)Positive 1D and 2D Systems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Positive 1D and 2D Systems年度引用




書(shū)目名稱(chēng)Positive 1D and 2D Systems年度引用學(xué)科排名




書(shū)目名稱(chēng)Positive 1D and 2D Systems讀者反饋




書(shū)目名稱(chēng)Positive 1D and 2D Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:16 | 只看該作者
第151816主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:18:57 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:35:19 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:31:38 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:47:43 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:11:57 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:44:43 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:03:39 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:33:25 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 18:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
招远市| 南木林县| 崇阳县| 和田县| 特克斯县| 姚安县| 北川| 通渭县| 甘南县| 高平市| 鲁甸县| 巫溪县| 盈江县| 深州市| 房产| 宜良县| 兰州市| 贡嘎县| 曲阳县| 都江堰市| 揭东县| 迁西县| 宣恩县| 阜宁县| 永昌县| 台中市| 屯昌县| 五河县| 海淀区| 兴山县| 台北县| 交口县| 许昌市| 武川县| 淳安县| 高台县| 霍林郭勒市| 高要市| 长宁区| 淅川县| 封丘县|