找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Planar Maps, Random Walks and Circle Packing; école d‘été de Proba Asaf Nachmias Book‘‘‘‘‘‘‘‘ 2020 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
查看: 16186|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:57:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Planar Maps, Random Walks and Circle Packing
副標(biāo)題école d‘été de Proba
編輯Asaf Nachmias
視頻videohttp://file.papertrans.cn/749/748236/748236.mp4
概述Entirely self-contained and aimed to fully accompany a single-semester graduate course.Many classical proofs have been simplified and streamlined.Contains numerous useful exercises
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Planar Maps, Random Walks and Circle Packing; école d‘été de Proba Asaf Nachmias Book‘‘‘‘‘‘‘‘ 2020 The Editor(s) (if applicable) and The Au
描述.This open access book focuses on the interplay between random walks on planar maps and Koebe’s circle packing theorem. Further topics covered include electric networks, the He–Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits.? One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided...A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex.?One widely applicable method of drawing planar graphs is given by Koebe’s circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps...The book is aimed at resea
出版日期Book‘‘‘‘‘‘‘‘ 2020
關(guān)鍵詞Circle Packing; Electric Networks; Planar Maps; Random Walk; Uniform Spanning Trees; Open Access
版次1
doihttps://doi.org/10.1007/978-3-030-27968-4
isbn_softcover978-3-030-27967-7
isbn_ebook978-3-030-27968-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s) 2020
The information of publication is updating

書目名稱Planar Maps, Random Walks and Circle Packing影響因子(影響力)




書目名稱Planar Maps, Random Walks and Circle Packing影響因子(影響力)學(xué)科排名




書目名稱Planar Maps, Random Walks and Circle Packing網(wǎng)絡(luò)公開度




書目名稱Planar Maps, Random Walks and Circle Packing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Planar Maps, Random Walks and Circle Packing被引頻次




書目名稱Planar Maps, Random Walks and Circle Packing被引頻次學(xué)科排名




書目名稱Planar Maps, Random Walks and Circle Packing年度引用




書目名稱Planar Maps, Random Walks and Circle Packing年度引用學(xué)科排名




書目名稱Planar Maps, Random Walks and Circle Packing讀者反饋




書目名稱Planar Maps, Random Walks and Circle Packing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:49:40 | 只看該作者
第148236主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:30:34 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:03:19 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:48:59 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:13:41 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:13:38 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:45:00 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:20:19 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:54:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 00:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘城县| 霍山县| 包头市| 土默特右旗| 互助| 堆龙德庆县| 密山市| 札达县| 南澳县| 务川| 新营市| 丹阳市| 淳安县| 龙泉市| 洪湖市| 于都县| 乌拉特中旗| 和平县| 浠水县| 阿拉善左旗| 晋城| 十堰市| 启东市| 视频| 聊城市| 平定县| 永修县| 巴中市| 长白| 新沂市| 沾益县| 深水埗区| 唐河县| 孝昌县| 张掖市| 关岭| 库车县| 乌兰浩特市| 浦东新区| 江油市| 福贡县|