找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Perturbation Methods and Semilinear Elliptic Problems on R^n; Antonio Ambrosetti,Andrea Malchiodi Book 2006 Birkh?user Basel 2006 Partial

[復(fù)制鏈接]
查看: 19177|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:40:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n
編輯Antonio Ambrosetti,Andrea Malchiodi
視頻videohttp://file.papertrans.cn/746/745140/745140.mp4
概述Winner of the Ferran Sunyer i Balaguer Prize 2005.Discussion of the abstract tool of perturbation methods in critical point theory in a form not contained in any other book.Treatment of various applic
叢書名稱Progress in Mathematics
圖書封面Titlebook: Perturbation Methods and Semilinear Elliptic Problems on R^n;  Antonio Ambrosetti,Andrea Malchiodi Book 2006 Birkh?user Basel 2006 Partial
描述Several important problems arising in Physics, Di?erential Geometry and other n topics lead to consider semilinear variational elliptic equations on R and a great deal of work has been devoted to their study. From the mathematical point of view, the main interest relies on the fact that the tools of Nonlinear Functional Analysis, based on compactness arguments, in general cannot be used, at least in a straightforward way, and some new techniques have to be developed. n On the other hand, there are several elliptic problems on R which are p- turbative in nature. In some cases there is a natural perturbation parameter, like inthe bifurcationfromthe essentialspectrum orinsingularlyperturbed equations or in the study of semiclassical standing waves for NLS. In some other circ- stances, one studies perturbations either because this is the ?rst step to obtain global results or else because it often provides a correct perspective for further global studies. For these perturbation problems a speci?c approach,that takes advantage of such a perturbative setting, seems the most appropriate. These abstract tools are provided by perturbation methods in critical point theory. Actually, it turns
出版日期Book 2006
關(guān)鍵詞Partial differential equations; Perturbation; Semilinear elliptic problems; compactness; differential eq
版次1
doihttps://doi.org/10.1007/3-7643-7396-2
isbn_ebook978-3-7643-7396-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2006
The information of publication is updating

書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n影響因子(影響力)




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n影響因子(影響力)學(xué)科排名




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n網(wǎng)絡(luò)公開度




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n被引頻次




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n被引頻次學(xué)科排名




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n年度引用




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n年度引用學(xué)科排名




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n讀者反饋




書目名稱Perturbation Methods and Semilinear Elliptic Problems on R^n讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:45:17 | 只看該作者
第145140主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:14:53 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:12:58 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:06:00 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:03:10 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:40:40 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:41:23 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:55:28 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:15:53 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 19:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白城市| 南召县| 三原县| 封丘县| 航空| 平潭县| 彰化市| 大安市| 钦州市| 蓬安县| 汶川县| 嫩江县| 米林县| 汕头市| 原平市| 广丰县| 固阳县| 湖南省| 阿瓦提县| 牟定县| 乐清市| 秀山| 祁门县| 施秉县| 扎赉特旗| 玉门市| 逊克县| 扶余县| 镇赉县| 淮安市| 新泰市| 吴川市| 兰考县| 罗甸县| 靖州| 建平县| 南城县| 长岛县| 禹州市| 宜川县| 客服|