找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Cryptography and Network Security Workshops; ACNS 2024 Satellite Martin Andreoni Conference proceedings 2024 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 生動(dòng)
31#
發(fā)表于 2025-3-26 22:52:50 | 只看該作者
32#
發(fā)表于 2025-3-27 02:56:43 | 只看該作者
Acki Nacki: A Probabilistic Proof-of-Stake Consensus Protocol with?Fast Finality and?Parallelisationpproach is separating the verification of execution by a consensus committee from the attestation of block propagation by network participants. Our consensus committee is randomly selected for each block and is not predetermined, while the Leader is deterministic.
33#
發(fā)表于 2025-3-27 05:50:56 | 只看該作者
Incorporating Cluster Analysis of?Feature Vectors for?Non-profiled Deep-learning-Based Side-Channel as MSB or HW. We propose a new deep-learning-based SCA in a non-profiled scenario to solve these problems. Our core idea is to conduct dimensionality reduction on the leakage waveform using DNN. The adversary conducts cluster analysis using the feature vectors extracted from power traces using DNN.
34#
發(fā)表于 2025-3-27 11:11:59 | 只看該作者
35#
發(fā)表于 2025-3-27 16:10:42 | 只看該作者
36#
發(fā)表于 2025-3-27 17:48:08 | 只看該作者
37#
發(fā)表于 2025-3-28 00:10:42 | 只看該作者
Harnessing the?Power of?General-Purpose LLMs in?Hardware Trojan Designic module abstractions of hardware designs. By doing so, we tackle the challenges posed by the context length limit of LLMs, that become prevalent during LLM-based analyses of large code bases. Next, we initiate an LLM analysis of the reduced code base, that includes only the register transfer level
38#
發(fā)表于 2025-3-28 05:33:37 | 只看該作者
Device Fingerprinting in?a?Smart Grid CPSgs) is modeled through the use of machine learning techniques. Under a malicious spoofing attack, the noise pattern deviates from the fingerprinted pattern and hence enabling the proposed detection scheme to identify these attacks. A novel ensemble learning method is used to identify the Intelligent
39#
發(fā)表于 2025-3-28 06:40:25 | 只看該作者
Evaluation of?Lightweight Machine Learning-Based NIDS Techniques for?Industrial IoTur implementations on the IoT-23 and TON_IoT datasets and compare the results in terms of classification performance, throughput and resource consumption. We show that tree-based models surpass the neural network-based models in classification performance and throughput but that hardware acceleratio
40#
發(fā)表于 2025-3-28 10:53:23 | 只看該作者
Measuring Cyber Resilience of?IoT-Enabled Critical National Infrastructuresd that the performance of the system under an attack is dependent on the recovery time; hence, the higher the systemic impact, the lower the resilience of the CNI and vice versa. Quantifying the resilience of CNI is crucial to determining the security control defenses required to reduce the impact o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 01:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滕州市| 徐汇区| 静乐县| 桃源县| 鸡泽县| 扶余县| 曲水县| 泗阳县| 百色市| 乌拉特中旗| 固始县| 荔波县| 盐边县| 宜兴市| 平湖市| 喀喇沁旗| 长子县| 湟源县| 任丘市| 金川县| 临朐县| 五家渠市| 丰台区| 汨罗市| 峨眉山市| 隆林| 来宾市| 汉川市| 张家川| 镇原县| 灵山县| 吴川市| 白河县| 富裕县| 宁明县| 竹北市| 高邮市| 荣成市| 抚顺县| 淮滨县| 收藏|