找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Periods and Nori Motives; Annette Huber,Stefan Müller-Stach Book 2017 Springer International Publishing AG 2017 Periods.Period Isomorphism

[復(fù)制鏈接]
查看: 35667|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:00:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Periods and Nori Motives
編輯Annette Huber,Stefan Müller-Stach
視頻videohttp://file.papertrans.cn/745/744088/744088.mp4
概述First book presenting the theory of Nori motives in detail.Studies the Kontsevich–Zagier theory of periods and its relation to mixed motives.Includes full background as well as many examples.Includes
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
圖書封面Titlebook: Periods and Nori Motives;  Annette Huber,Stefan Müller-Stach Book 2017 Springer International Publishing AG 2017 Periods.Period Isomorphism
描述This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties..Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich‘s formal period algebra represents a torsor under the motivic Galois group in Nori‘s sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting..Periods and Nori Motives. is highly informative
出版日期Book 2017
關(guān)鍵詞Periods; Period Isomorphism; Motives; de Rham Cohomology; Singular Cohomology; Tannaka Categories; Torsors
版次1
doihttps://doi.org/10.1007/978-3-319-50926-6
isbn_softcover978-3-319-84524-1
isbn_ebook978-3-319-50926-6Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Periods and Nori Motives影響因子(影響力)




書目名稱Periods and Nori Motives影響因子(影響力)學(xué)科排名




書目名稱Periods and Nori Motives網(wǎng)絡(luò)公開度




書目名稱Periods and Nori Motives網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Periods and Nori Motives被引頻次




書目名稱Periods and Nori Motives被引頻次學(xué)科排名




書目名稱Periods and Nori Motives年度引用




書目名稱Periods and Nori Motives年度引用學(xué)科排名




書目名稱Periods and Nori Motives讀者反饋




書目名稱Periods and Nori Motives讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:30 | 只看該作者
第144088主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:08:07 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:25:09 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:49:11 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:46:13 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:03:02 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:58:42 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:15:54 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:32:32 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交口县| 兴化市| 砚山县| 沙湾县| 南京市| 宜都市| 赤水市| 南溪县| 呼伦贝尔市| 宾阳县| 宜黄县| SHOW| 湾仔区| 黔西| 濮阳市| 石首市| 德惠市| 大渡口区| 五峰| 深州市| 湖北省| 长治县| 赫章县| 密山市| 曲靖市| 绥棱县| 新丰县| 佛教| 廉江市| 南漳县| 石渠县| 罗山县| 句容市| 揭阳市| 云林县| 合肥市| 资中县| 浦东新区| 台前县| 涡阳县| 阿拉善盟|