找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics; Seshadev Padhi,John R. Graef,P. D. N. Srinivas

[復(fù)制鏈接]
查看: 36327|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:39:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics
編輯Seshadev Padhi,John R. Graef,P. D. N. Srinivasu
視頻videohttp://file.papertrans.cn/745/744068/744068.mp4
概述Introduces the existence of multiple positive periodic solutions to first-order functional differential equations with real-world applications.Demonstrates how the Leggett-Williams fixed-point theorem
圖書封面Titlebook: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics;  Seshadev Padhi,John R. Graef,P. D. N. Srinivas
描述This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, and the environment.
出版日期Book 2014
關(guān)鍵詞Existence of solutions; Fixed-point theorem; Functional differential equations; Global attractivity; Ord
版次1
doihttps://doi.org/10.1007/978-81-322-1895-1
isbn_softcover978-81-322-3542-2
isbn_ebook978-81-322-1895-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature India Pr
The information of publication is updating

書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics影響因子(影響力)




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics影響因子(影響力)學(xué)科排名




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics網(wǎng)絡(luò)公開度




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics被引頻次




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics被引頻次學(xué)科排名




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics年度引用




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics年度引用學(xué)科排名




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics讀者反饋




書目名稱Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:55 | 只看該作者
第144068主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:30:15 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:59:51 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:22:05 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:50:31 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:08:31 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:10:46 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:16:53 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:19:19 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浮梁县| 张家口市| 新民市| 铜鼓县| 河池市| 墨竹工卡县| 易门县| 天等县| 商都县| 息烽县| 平罗县| 广汉市| 邵东县| 吉林市| 永州市| 邯郸市| 黑龙江省| 博白县| 岚皋县| 牡丹江市| 临泽县| 同江市| 南召县| 八宿县| 锦州市| 萝北县| 涟源市| 东丽区| 襄汾县| 岳西县| 泰州市| 贵溪市| 阜阳市| 铁力市| 汾阳市| 汉源县| 隆德县| 江安县| 石屏县| 吴忠市| 安化县|