找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Perfect Lattices in Euclidean Spaces; Jacques Martinet Book 2003 Springer-Verlag Berlin Heidelberg 2003 Euclidean lattices.Symbol.coding t

[復(fù)制鏈接]
查看: 11874|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:07:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Perfect Lattices in Euclidean Spaces
編輯Jacques Martinet
視頻videohttp://file.papertrans.cn/744/743678/743678.mp4
概述Long-awaited authoritative reference on this beautiful subject at the interface of geometry, number theory, coding theory and group theory.Complement to J.H. Conway and N.J.A. Sloane "Sphere Packings,
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Perfect Lattices in Euclidean Spaces;  Jacques Martinet Book 2003 Springer-Verlag Berlin Heidelberg 2003 Euclidean lattices.Symbol.coding t
描述.Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3...This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property...Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290...Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices..
出版日期Book 2003
關(guān)鍵詞Euclidean lattices; Symbol; coding theory; eutactic lattices; number theory; perfect lattices; sphere pack
版次1
doihttps://doi.org/10.1007/978-3-662-05167-2
isbn_softcover978-3-642-07921-4
isbn_ebook978-3-662-05167-2Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

書目名稱Perfect Lattices in Euclidean Spaces影響因子(影響力)




書目名稱Perfect Lattices in Euclidean Spaces影響因子(影響力)學(xué)科排名




書目名稱Perfect Lattices in Euclidean Spaces網(wǎng)絡(luò)公開度




書目名稱Perfect Lattices in Euclidean Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Perfect Lattices in Euclidean Spaces被引頻次




書目名稱Perfect Lattices in Euclidean Spaces被引頻次學(xué)科排名




書目名稱Perfect Lattices in Euclidean Spaces年度引用




書目名稱Perfect Lattices in Euclidean Spaces年度引用學(xué)科排名




書目名稱Perfect Lattices in Euclidean Spaces讀者反饋




書目名稱Perfect Lattices in Euclidean Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:44 | 只看該作者
第143678主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:30:36 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:31:05 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:22:41 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:30:34 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:36:28 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:36:39 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:11:00 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:53:08 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青阳县| 天门市| 拜城县| 贡嘎县| 聊城市| 曲周县| 五大连池市| 轮台县| 枣强县| 华亭县| 札达县| 福海县| 喜德县| 南丹县| 宜都市| 永定县| 大港区| 海伦市| 长乐市| 绥阳县| 平山县| 苗栗市| 罗田县| 额尔古纳市| 北辰区| 广州市| 奎屯市| 双鸭山市| 宕昌县| 龙南县| 荔波县| 西城区| 松江区| 黎川县| 蓝山县| 酒泉市| 滦南县| 古交市| 平潭县| 睢宁县| 辉南县|