找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Peeling Random Planar Maps; école d’été de Proba Nicolas Curien Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
查看: 10363|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:44:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Peeling Random Planar Maps
副標(biāo)題école d’été de Proba
編輯Nicolas Curien
視頻videohttp://file.papertrans.cn/744/743301/743301.mp4
概述The first book on probabilistic aspects of planar maps.Provides comprehensive coverage of the theory and includes open problems.Illustrated with numerous attractive figures
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Peeling Random Planar Maps; école d’été de Proba Nicolas Curien Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive
描述These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits...) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks...)..A “Markovian” approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search). It is revealed that different types of Markovian explorations can yield different types of information about a surface..Based on an école d‘été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry. ?Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of
出版日期Book 2023
關(guān)鍵詞Graph Theory; Planar Maps; Combinatorics; Markov Property; Scaling Limits; Stable Processes; Combinatorial
版次1
doihttps://doi.org/10.1007/978-3-031-36854-7
isbn_softcover978-3-031-36853-0
isbn_ebook978-3-031-36854-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Peeling Random Planar Maps影響因子(影響力)




書(shū)目名稱Peeling Random Planar Maps影響因子(影響力)學(xué)科排名




書(shū)目名稱Peeling Random Planar Maps網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Peeling Random Planar Maps網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Peeling Random Planar Maps被引頻次




書(shū)目名稱Peeling Random Planar Maps被引頻次學(xué)科排名




書(shū)目名稱Peeling Random Planar Maps年度引用




書(shū)目名稱Peeling Random Planar Maps年度引用學(xué)科排名




書(shū)目名稱Peeling Random Planar Maps讀者反饋




書(shū)目名稱Peeling Random Planar Maps讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:39:52 | 只看該作者
第143301主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:04:26 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:59:58 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:37:25 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:20:08 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:04:09 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:37:41 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:43:06 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:25:50 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
关岭| 麦盖提县| 阜平县| 志丹县| 睢宁县| 宜良县| 彭阳县| 赤城县| 呼伦贝尔市| 麻城市| 岳阳县| 沙坪坝区| 平远县| 漳浦县| 连山| 湟中县| 田林县| 天峻县| 南城县| 天津市| 宝丰县| 尼玛县| 南靖县| 洛南县| 龙门县| 涟水县| 屯昌县| 广元市| 介休市| 通江县| 德惠市| 湘阴县| 桂林市| 霸州市| 永定县| 万荣县| 梅河口市| 绥江县| 阿城市| 大同市| 尉犁县|