找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Path Integral Quantization and Stochastic Quantization; Michio Masujima Book 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Eic

[復(fù)制鏈接]
查看: 44864|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:50:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Path Integral Quantization and Stochastic Quantization
編輯Michio Masujima
視頻videohttp://file.papertrans.cn/743/742064/742064.mp4
概述Excellent overview.Important topic in elementary particle physics.Available online in LINK.All figures and references linked.Table of contents, introductions to chapters free for all.http://link.sprin
圖書封面Titlebook: Path Integral Quantization and Stochastic Quantization;  Michio Masujima Book 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Eic
描述In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. Forthe description ofthe classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal- ism. The Hamiltonian formalism is derived from the Lagrangian·formalism. In the standard formalism ofquantum mechanics, we usually make use ofthe Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism ofquantum mechanics is Schrodinger‘s wave mechan- ics. In this approach, we regard the Hamilton-Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Based on the optical analogy, we obtain the Schrodinger equation as a result ofthe inverse of the Eikonal approximation to the Hamilton-Jacobi equation, and thus we arrive at "wave mechanics". The second formalism ofquantum mechanics is Heisenberg‘s "matrix me- chanics". In this approach, we arrive at the Heisenberg equation of motion from consideration of the consistency of the Ritz combination principle, the Bohr quantizatio
出版日期Book 2009Latest edition
關(guān)鍵詞Eichtheorie; Feldtheorie; Pfadintegrale; Stochastische Quantisierung; quantum mechanics
版次2
doihttps://doi.org/10.1007/978-3-540-87851-3
isbn_softcover978-3-540-87850-6
isbn_ebook978-3-540-87851-3
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Path Integral Quantization and Stochastic Quantization影響因子(影響力)




書目名稱Path Integral Quantization and Stochastic Quantization影響因子(影響力)學(xué)科排名




書目名稱Path Integral Quantization and Stochastic Quantization網(wǎng)絡(luò)公開度




書目名稱Path Integral Quantization and Stochastic Quantization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Path Integral Quantization and Stochastic Quantization被引頻次




書目名稱Path Integral Quantization and Stochastic Quantization被引頻次學(xué)科排名




書目名稱Path Integral Quantization and Stochastic Quantization年度引用




書目名稱Path Integral Quantization and Stochastic Quantization年度引用學(xué)科排名




書目名稱Path Integral Quantization and Stochastic Quantization讀者反饋




書目名稱Path Integral Quantization and Stochastic Quantization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:09 | 只看該作者
第142064主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:35:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:06:22 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:39:12 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:10:05 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:04:04 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:24:00 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:45:22 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:21:06 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湾仔区| 高州市| 广西| 灯塔市| 禹城市| 西林县| 巧家县| 砚山县| 揭东县| 连江县| 洞口县| 勃利县| 舞阳县| 郴州市| 神农架林区| 那曲县| 石楼县| 平定县| 盈江县| 杨浦区| 昌宁县| 夏津县| 通江县| 南涧| 福州市| 年辖:市辖区| 张家川| 辽中县| 普宁市| 澄江县| 太仆寺旗| 剑河县| 寻甸| 淮滨县| 遵义市| 闻喜县| 汶上县| 普宁市| 北海市| 沁阳市| 咸宁市|