找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Partial Differential Equations III; Nonlinear Equations Michael E. Taylor Book 19961st edition Springer Science+Business Media New York 199

[復(fù)制鏈接]
樓主: 忠誠(chéng)
11#
發(fā)表于 2025-3-23 11:41:40 | 只看該作者
12#
發(fā)表于 2025-3-23 13:53:17 | 只看該作者
13#
發(fā)表于 2025-3-23 19:13:46 | 只看該作者
Book 19961st edition winds, it has developed into a body of material that interacts with many branches of math- ematics, such as differential geometry, complex analysis, and harmonic analysis, as weIl as a ubiquitous factor in the description and elucidati?n of problems in mathematical physics. This work is intended to
14#
發(fā)表于 2025-3-23 22:59:19 | 只看該作者
15#
發(fā)表于 2025-3-24 04:41:25 | 只看該作者
Springer Science+Business Media New York 1996
16#
發(fā)表于 2025-3-24 09:29:20 | 只看該作者
Partial Differential Equations III978-1-4757-4190-2Series ISSN 0066-5452 Series E-ISSN 2196-968X
17#
發(fā)表于 2025-3-24 13:09:23 | 只看該作者
18#
發(fā)表于 2025-3-24 16:07:55 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:32 | 只看該作者
Euler and Navier-Stokes Equations for Incompressible Fluids,This chapter deals with equations describing motion of an incompressible fluid moving in a fixed compact space M, which it fills completely. We consider two types of fluid motion, with or without viscosity, and two types of compact space, a compact smooth Riemannian manifold with or without boundary.
20#
發(fā)表于 2025-3-24 23:46:18 | 只看該作者
Function Space and Operator Theory for Nonlinear Analysis, study Sobolev spaces based on .., rather than just ... Sections 1 and 2 discuss the definition of Sobolev spaces .., for . ∈ Z., and inclusions of the form .. ? ... Estimates based on such inclusions have refined forms, due to E. Gagliardo and L. Nirenberg. We discuss these in §3, together with res
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新和县| 五华县| 冕宁县| 昭平县| 华池县| 康平县| 磐石市| 武山县| 昌江| 惠州市| 武强县| 商水县| 藁城市| 天等县| 来安县| 玉龙| 如东县| 麻栗坡县| 临泉县| 当阳市| 贡山| 蛟河市| 集安市| 明水县| 浮梁县| 洞口县| 临洮县| 攀枝花市| 邻水| 南江县| 巍山| 晋中市| 康保县| 丰台区| 隆化县| 阿克| 屯门区| 印江| 葵青区| 库车县| 边坝县|