找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Parameterized and Exact Computation; 6th International Sy Dániel Marx,Peter Rossmanith Conference proceedings 2012 Springer-Verlag GmbH Ber

[復制鏈接]
樓主: 壓榨機
11#
發(fā)表于 2025-3-23 13:36:19 | 只看該作者
Sparse Solutions of Sparse Linear Systems: Fixed-Parameter Tractability and an Application of Complex Group Testing,linear equations (i.e., where the rows of . are .-sparse) is fixed-parameter tractable (FPT) in the combined parameter .,.. For .?=?2 the problem is simple. For 0,1-matrices . we can also compute an .(..) kernel. For systems of linear inequalities we get an FPT result in the combined parameter .,.,
12#
發(fā)表于 2025-3-23 14:12:00 | 只看該作者
New Upper Bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the Average Variable Degree,due to Williams) solving them in less than 2. steps uses exponential space. Scott and Sorkin give an algorithm with . time and polynomial space for these problems, where . is the average variable degree. We improve this bound to . for MAX-2-SAT and . for MAX-2-CSP. We also prove stronger upper bound
13#
發(fā)表于 2025-3-23 22:04:27 | 只看該作者
Improved Parameterized Algorithms for above Average Constraint Satisfaction,e, a simple random assignment for . allows 7/8-approximation and for every .?>?0 there is no polynomial-time (7/8?+?.)-approximation unless P=NP. Another example is the . of bounded arity. Given the expected fraction . of the constraints satisfied by a random assignment (i.e. permutation), there is
14#
發(fā)表于 2025-3-23 22:13:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:01 | 只看該作者
Kernel Bounds for Path and Cycle Problems, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show polynomial kernels when the parameters are a given vertex cover, a mod
16#
發(fā)表于 2025-3-24 09:04:34 | 只看該作者
17#
發(fā)表于 2025-3-24 11:09:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:16:08 | 只看該作者
Simpler Linear-Time Kernelization for Planar Dominating Set,domination number of ., i.e., the size of a smallest dominating set in?.. In the language of parameterized computation, the new algorithm is a linear-time kernelization for the NP-complete . problem that produces a kernel of linear size. Such an algorithm was previously known (van Bevern et al., the
19#
發(fā)表于 2025-3-24 20:20:09 | 只看該作者
Linear-Time Computation of a Linear Problem Kernel for Dominating Set on Planar Graphs,(.)) with?.(.)?=?.(.′). In addition, a minimum dominating set for?. can be inferred from a minimum dominating set for?.′. In terms of parameterized algorithmics, this implies a linear-size problem kernel for the NP-hard . problem on planar graphs, where the kernelization takes linear time. This impr
20#
發(fā)表于 2025-3-25 03:03:01 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 23:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
马鞍山市| 施甸县| 桦川县| 宁德市| 兴安盟| 临颍县| 蓬莱市| 乐亭县| 宁海县| 周宁县| 衡水市| 平谷区| 古丈县| 定日县| 万载县| 射洪县| 兴安县| 丹凤县| 静乐县| 射洪县| 兴文县| 博客| 沧州市| 雷波县| 错那县| 图木舒克市| 黄梅县| 临澧县| 化德县| 大冶市| 浪卡子县| 朝阳县| 凤台县| 蒙阴县| 蓝山县| 高青县| 淮安市| 本溪市| 阿巴嘎旗| 襄城县| 大宁县|