找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Parallel Problem Solving from Nature – PPSN XVII; 17th International C Günter Rudolph,Anna V. Kononova,Tea Tu?ar Conference proceedings 202

[復(fù)制鏈接]
樓主: 非決定性
21#
發(fā)表于 2025-3-25 03:27:30 | 只看該作者
22#
發(fā)表于 2025-3-25 08:59:55 | 只看該作者
Do We Really Need to?Use Constraint Violation in?Constrained Evolutionary Multi-objective Optimization?optimization problems. However, it is not uncommon that the constraint violation is hardly approachable in real-world black-box optimization scenarios. It is unclear that whether the existing constrained evolutionary multi-objective optimization algorithms, whose environmental selection mechanism ar
23#
發(fā)表于 2025-3-25 14:10:17 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:33 | 只看該作者
Fair Feature Selection with?a?Lexicographic Multi-objective Genetic Algorithmf people based e.g. on gender or race. This paper proposes a new Lexicographic multi-objective Genetic Algorithm for Fair Feature Selection (LGAFFS). LGAFFS selects a subset of relevant features which is optimised for a given classification algorithm, by simultaneously optimising one measure of accu
25#
發(fā)表于 2025-3-25 22:00:53 | 只看該作者
Greedy Decremental Quick Hypervolume Subset Selection Algorithmsimes faster than the original implementation and according to the presented computational experiment it is at least competitive to other state-of-the-art codes for hypervolume computation. Second, we present a Greedy Decremental Lazy Quick Hypervolume Subset Selection algorithm. Third, we propose a
26#
發(fā)表于 2025-3-26 02:49:21 | 只看該作者
Hybridizing Hypervolume-Based Evolutionary Algorithms and?Gradient Descent by?Dynamic Resource Allocationariables, classic domination-based approaches are known to lose selection pressure when approaching the Pareto set. Indicator-based approaches, such as optimizing the uncrowded hypervolume (UHV), can overcome this issue and ensure that individual solutions converge to the Pareto set. Recently, a gra
27#
發(fā)表于 2025-3-26 06:09:59 | 只看該作者
28#
發(fā)表于 2025-3-26 11:41:19 | 只看該作者
29#
發(fā)表于 2025-3-26 14:14:28 | 只看該作者
Multi-Objective Evolutionary Algorithm Based on the Linear Assignment Problem and the Hypervolume Approximation Using Polar Coordinates (MOEA-LAPCO)lem (LAP). In a LAP, we want to assign . agents to . tasks, where assigning an agent to a task corresponds to a cost. Thus, the aim is to minimize the overall assignment cost. It has been shown that HDE is competitive with respect to state-of-the-art algorithms. However, in this work, we identify tw
30#
發(fā)表于 2025-3-26 18:50:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 22:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栖霞市| 平凉市| 元江| 霸州市| 元氏县| 拉萨市| 西和县| 泽州县| 高台县| 多伦县| 深水埗区| 本溪市| 古丈县| 屏南县| 柘荣县| 新泰市| 建水县| 永康市| 汉寿县| 会泽县| 满城县| 东台市| 永兴县| 潢川县| 泰宁县| 临澧县| 汕头市| 西充县| 申扎县| 宝坻区| 永吉县| 大庆市| 青浦区| 和顺县| 泊头市| 亚东县| 固镇县| 沛县| 乐亭县| 北辰区| 丽江市|