找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Parallel Problem Solving from Nature – PPSN XVII; 17th International C Günter Rudolph,Anna V. Kononova,Tea Tu?ar Conference proceedings 202

[復(fù)制鏈接]
查看: 7741|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:00:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Parallel Problem Solving from Nature – PPSN XVII
副標(biāo)題17th International C
編輯Günter Rudolph,Anna V. Kononova,Tea Tu?ar
視頻videohttp://file.papertrans.cn/742/741001/741001.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Parallel Problem Solving from Nature – PPSN XVII; 17th International C Günter Rudolph,Anna V. Kononova,Tea Tu?ar Conference proceedings 202
描述This two-volume set LNCS 13398 and LNCS 13399 constitutes the refereed proceedings of the 17th International Conference on Parallel Problem Solving from Nature, PPSN 2022, held in Dortmund, Germany, in September 2022..The ?87 revised full papers were carefully reviewed and selected from numerous submissions. The conference presents a study of computing methods derived from natural models. Amorphous Computing, Artificial Life, Artificial Ant Systems, Artificial Immune Systems, Artificial Neural Networks, Cellular Automata, Evolutionary Computation, Swarm Computing, Self-Organizing Systems, Chemical Computation, Molecular Computation, Quantum Computation, Machine Learning, and Artificial Intelligence approaches using Natural Computing methods are just some of the topics covered in this field..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; computer programming; computer science; computer systems; correlation analysis;
版次1
doihttps://doi.org/10.1007/978-3-031-14721-0
isbn_softcover978-3-031-14720-3
isbn_ebook978-3-031-14721-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Parallel Problem Solving from Nature – PPSN XVII影響因子(影響力)




書目名稱Parallel Problem Solving from Nature – PPSN XVII影響因子(影響力)學(xué)科排名




書目名稱Parallel Problem Solving from Nature – PPSN XVII網(wǎng)絡(luò)公開度




書目名稱Parallel Problem Solving from Nature – PPSN XVII網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Parallel Problem Solving from Nature – PPSN XVII被引頻次




書目名稱Parallel Problem Solving from Nature – PPSN XVII被引頻次學(xué)科排名




書目名稱Parallel Problem Solving from Nature – PPSN XVII年度引用




書目名稱Parallel Problem Solving from Nature – PPSN XVII年度引用學(xué)科排名




書目名稱Parallel Problem Solving from Nature – PPSN XVII讀者反饋




書目名稱Parallel Problem Solving from Nature – PPSN XVII讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:01:22 | 只看該作者
Gene-pool Optimal Mixing in?Cartesian Genetic Programmingls that re-use subexpressions more often than GP-GOMEA uses duplicate subexpressions. This indicates that CGP-GOMEA has unique added potential, allowing to find even smaller expressions than GP-GOMEA with similar accuracy.
板凳
發(fā)表于 2025-3-22 00:54:42 | 只看該作者
Genetic Programming for?Combining Directional Changes Indicators in?International Stock Marketsrmance to strategies derived under physical time, namely GP-PT, and also to a buy and hold trading strategy. Our results show that the GP-DC is able to outperform both GP-PT and the buy and hold strategy, making DC-based trading strategies a powerful complementary approach for algorithmic trading.
地板
發(fā)表于 2025-3-22 06:38:51 | 只看該作者
5#
發(fā)表于 2025-3-22 08:47:17 | 只看該作者
Hybridizing Hypervolume-Based Evolutionary Algorithms and?Gradient Descent by?Dynamic Resource Allocationgorithms produce similar or better results than the EA or gradient-based algorithm alone, even when finite differences are used to approximate gradients. The implementation of the hybrid algorithm is available at ..
6#
發(fā)表于 2025-3-22 15:05:23 | 只看該作者
Importance-Aware Genetic Programming for?Automated Scheduling Heuristics Learning in?Dynamic Flexible Job Shop Schedulingthm can learn significantly better scheduling heuristics than the compared algorithms. The effectiveness of the proposed algorithm is realised by the proposed strategies for detecting rule importance and allocating resources. Particularly, the routing rules play a more important role than the sequencing rules in the examined DFJSS scenarios.
7#
發(fā)表于 2025-3-22 20:30:09 | 只看該作者
A General Architecture for Generating Interactive Decomposition-Based MOEAs proposal to generate an interactive decomposition-based algorithm utilizing a reference vector re-arrangement procedure and MOEA/D. We demonstrate the performance of our proposal with a real-world problem and multiple benchmark problems.
8#
發(fā)表于 2025-3-22 21:49:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:45:53 | 只看該作者
10#
發(fā)表于 2025-3-23 08:03:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
耿马| 和田县| 繁昌县| 孝义市| 绥棱县| 清苑县| 秀山| 景宁| 安化县| 衡东县| 光泽县| 芦溪县| 尚义县| 习水县| 遵义县| 贺兰县| 犍为县| 龙游县| 古浪县| 定南县| 南丹县| 曲阳县| 崇左市| 杭锦旗| 瓮安县| 浦江县| 卫辉市| 定结县| 白山市| 云南省| 曲阳县| 丹东市| 开远市| 阿尔山市| 元朗区| 祥云县| 新乐市| 云霄县| 沅江市| 师宗县| 北流市|