找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Parabolicity, Volterra Calculus, and Conical Singularities; A Volume of Advances Sergio Albeverio,Michael Demuth,Bert-Wolfgang Schu Book 20

[復(fù)制鏈接]
查看: 22133|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:22:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities
副標(biāo)題A Volume of Advances
編輯Sergio Albeverio,Michael Demuth,Bert-Wolfgang Schu
視頻videohttp://file.papertrans.cn/741/740832/740832.mp4
叢書(shū)名稱Operator Theory: Advances and Applications
圖書(shū)封面Titlebook: Parabolicity, Volterra Calculus, and Conical Singularities; A Volume of Advances Sergio Albeverio,Michael Demuth,Bert-Wolfgang Schu Book 20
描述Partial differential equations constitute an integral part of mathematics. They lie at the interface of areas as diverse as differential geometry, functional analysis, or the theory of Lie groups and have numerous applications in the applied sciences. A wealth of methods has been devised for their analysis. Over the past decades, operator algebras in connection with ideas and structures from geometry, topology, and theoretical physics have contributed a large variety of particularly useful tools. One typical example is the analysis on singular configurations, where elliptic equations have been studied successfully within the framework of operator algebras with symbolic structures adapted to the geometry of the underlying space. More recently, these techniques have proven to be useful also for studying parabolic and hyperbolic equations. Moreover, it turned out that many seemingly smooth, noncompact situations can be handled with the ideas from singular analysis. The three papers at the beginning of this volume highlight this aspect. They deal with parabolic equations, a topic relevant for many applications. The first article prepares the ground by presenting a calculus for pseudo d
出版日期Book 2002
關(guān)鍵詞Pseudodifferential operators; calculus; differential equation; hyperbolic equation; partial differential
版次1
doihttps://doi.org/10.1007/978-3-0348-8191-3
isbn_softcover978-3-0348-9469-2
isbn_ebook978-3-0348-8191-3Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightSpringer Basel AG 2002
The information of publication is updating

書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities影響因子(影響力)




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities影響因子(影響力)學(xué)科排名




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities被引頻次




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities被引頻次學(xué)科排名




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities年度引用




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities年度引用學(xué)科排名




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities讀者反饋




書(shū)目名稱Parabolicity, Volterra Calculus, and Conical Singularities讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:24 | 只看該作者
第140832主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:28:50 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:40:35 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:35:48 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:52:00 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:51:26 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:36:40 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:20:30 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:03:33 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宕昌县| 武宣县| 镇远县| 军事| 无锡市| 定安县| 南昌县| 惠州市| 吉木萨尔县| 闽清县| 合阳县| 临沭县| 固阳县| 临湘市| 西宁市| 崇明县| 揭西县| 屏东市| 永登县| 吉木萨尔县| 衡山县| 宜川县| 车致| 土默特左旗| 盐亭县| 利辛县| 阳东县| 正宁县| 台中市| 唐海县| 曲周县| 黑山县| 开化县| 田阳县| 科技| 横山县| 宜兰市| 琼结县| 普安县| 宜昌市| 安丘市|