找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integr; George A. Anastassiou Book 2019 Spri

[復(fù)制鏈接]
樓主: DEBUT
61#
發(fā)表于 2025-4-1 02:48:29 | 只看該作者
Quantitative Approximation by Choquet Integrals,retation. Initially we start with the study of the rate of the convergence of the well-known Bernstein–Kantorovich–Choquet and Bernstein–Durrweyer–Choquet polynomial Choquet-integral operators. Then we study the very general comonotonic positive sublinear operators based on the representation theore
62#
發(fā)表于 2025-4-1 07:39:28 | 只看該作者
Conformable Fractional Approximation by Choquet Integrals,Choquet integral interpretation. Initially we start with the study of the conformable fractional rate of the convergence of the well-known Bernstein–Kantorovich–Choquet and Bernstein–Durrweyer–Choquet polynomial Choquet-integral operators. Then we study in the fractional sense the very general comon
63#
發(fā)表于 2025-4-1 10:41:12 | 只看該作者
Multivariate and Convex Quantitative Approximation by Choquet Integrals,pretation. Initially we start with the study of the rate of the convergence of the well-known Bernstein–Kantorovich–Choquet and Bernstein–Durrweyer–Choquet polynomial Choquet-integral operators. We introduce also their multivariate analogs. Then we study the very general comonotonic positive subline
64#
發(fā)表于 2025-4-1 16:22:02 | 只看該作者
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗源县| 德兴市| 义马市| 民权县| 思茅市| 钟祥市| 托克托县| 商丘市| 天峻县| 潮安县| 集安市| 旬阳县| 宿迁市| 剑阁县| 阿瓦提县| 芜湖市| 剑河县| 康乐县| 绥滨县| 天等县| 西昌市| 大悟县| 山东省| 津市市| 玉山县| 海门市| 仙游县| 墨竹工卡县| 延边| 赤水市| 黄梅县| 嘉荫县| 潞城市| 博乐市| 东安县| 游戏| 海南省| 梅州市| 台湾省| 云阳县| 新竹县|