找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integr; George A. Anastassiou Book 2019 Spri

[復(fù)制鏈接]
樓主: DEBUT
21#
發(fā)表于 2025-3-25 06:18:18 | 只看該作者
https://doi.org/10.1007/978-3-030-04287-5Non-Additive Integrals Neural Network Operators; Choquet Integral Approximators; Shilkret Integral App
22#
發(fā)表于 2025-3-25 09:14:56 | 只看該作者
,Approximation with Rates by Kantorovich–Choquet Quasi-interpolation Neural Network Operators,th respect to supremum norm. This is done with rates using the first univariate and multivariate moduli of continuity. We approximate continuous and bounded functions on . .. When they are also uniformly continuous we have pointwise and uniform convergences. It follows [.].
23#
發(fā)表于 2025-3-25 14:36:56 | 只看該作者
Mixed Conformable and Iterated Fractional Quantitative Approximation by Choquet Integrals, given a precise Choquet integral interpretation. Initially we start with the research of the mixed conformable and iterated fractional rate of the convergence of the well-known Bernstein-Kantorovich–Choquet and Bernstein–Durrweyer–Choquet polynomial Choquet-integral operators.
24#
發(fā)表于 2025-3-25 15:54:13 | 只看該作者
25#
發(fā)表于 2025-3-25 20:39:13 | 只看該作者
George A. AnastassiouPresents a range of original approaches to approximation.All chapters are self-contained and can be read independently.Provides a deeper formal analysis of several issues that are relevant to decision
26#
發(fā)表于 2025-3-26 01:28:59 | 只看該作者
Springer Nature Switzerland AG 2019
27#
發(fā)表于 2025-3-26 07:36:19 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:32 | 只看該作者
Approximation with Rates by Shift Invariant Univariate Sublinear-Choquet Operators,he unit with rates. Furthermore, two examples of very general specialized operators are presented fulfilling all the above properties, the higher order of approximation of these operators is also studied. It follows [.].
29#
發(fā)表于 2025-3-26 14:41:28 | 只看該作者
30#
發(fā)表于 2025-3-26 17:25:13 | 只看該作者
Hardy Type Inequalities for Choquet Integrals,?lder’s inequalities for more than two functions and a multivariate Choquet–Fubini’s theorem. The main proving tool here is the property of comonotonicity of functions. We finish with independent estimates on left and right Riemann–Liouville–Choquet fractional integrals.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望谟县| 周宁县| 新蔡县| 五大连池市| 科技| 渭源县| 左云县| 蓬安县| 雅安市| 兴安盟| 中方县| 平定县| 磴口县| 乐至县| 景谷| 肥西县| 呼图壁县| 通山县| 开远市| 丽水市| 横山县| 出国| 南京市| 安溪县| 遵义市| 元朗区| 宁安市| 大悟县| 宜章县| 思南县| 彝良县| 霸州市| 穆棱市| 梅河口市| 浙江省| 彰化市| 通许县| 廉江市| 长顺县| 桃园市| 静海县|