找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orbital Relative Motion and Terminal Rendezvous; Analytic and Numeric Jean Albert Kéchichian Book 2021 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
樓主: 突然
11#
發(fā)表于 2025-3-23 12:24:03 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:11 | 只看該作者
Orbital Relative Motion and Terminal Rendezvous978-3-030-64657-8Series ISSN 0924-4263 Series E-ISSN 2542-8896
13#
發(fā)表于 2025-3-23 18:21:19 | 只看該作者
Book 2021ives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes
14#
發(fā)表于 2025-3-23 22:18:29 | 只看該作者
15#
發(fā)表于 2025-3-24 02:21:57 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:24 | 只看該作者
Analytic Solutions for the Perturbed Motion of a Spacecraft in Near-Circular Orbit, Under the Influthe . harmonic, a position error of 200?m per revolution is sustained when the initial orbit is circular. The equations developed in this chapter can be used to carry out terminal rendezvous in near-circular obit around the oblate Earth.
17#
發(fā)表于 2025-3-24 14:12:37 | 只看該作者
The Analysis of the Relative Motion in General Elliptic Orbit with Respect to a Dragging and Precese equations can be effectively put to use in calculating by an iterative scheme, the impulsive rendezvous maneuvers in elliptic orbit around the Earth or those planets that are either atmosphere bearing or have a dominant second zonal harmonic, or both.
18#
發(fā)表于 2025-3-24 16:39:59 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:17 | 只看該作者
Effect of Luni-Solar Gravity Perturbations on a Near-Circular Orbit: Third-Body Orbit Eccentricity ied out, all the orbital elements can be readily obtained and used for example in the maneuver planning function. This theory can be useful for the autonomous navigation of geostationary spacecraft as well as other high near-circular orbit applications such as the GPS spacecraft.
20#
發(fā)表于 2025-3-25 03:03:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太原市| 文水县| 松滋市| 武安市| 平定县| 淳化县| 河北区| 延庆县| 称多县| 丰镇市| 东光县| 安龙县| 荣成市| 珲春市| 五大连池市| 托克逊县| 两当县| 新乡县| 道真| 漳州市| 洪湖市| 弥勒县| 辽宁省| 上林县| 瓦房店市| 罗甸县| 石景山区| 祁门县| 正阳县| 阿克苏市| 六枝特区| 英山县| 资阳市| 江门市| 英超| 桂东县| 治县。| 永泰县| 温宿县| 郓城县| 苍南县|