找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization, Variational Analysis and Applications; IFSOVAA-2020, Varana Vivek Laha,Pierre Maréchal,S. K. Mishra Conference proceedings 20

[復(fù)制鏈接]
樓主: 尤指植物
21#
發(fā)表于 2025-3-25 06:09:10 | 只看該作者
J.-P. Dussault,M. Haddou,T. Migotit words in tweets) are greatly affected by the sparsity of the short tweet texts and the low co-occurrence rates of hashtags in tweets. Meanwhile, semantically related hashtags but using different text-expressions may show similar temporal patterns (i.e., the frequencies of hashtag usages changing
22#
發(fā)表于 2025-3-25 08:13:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:29:19 | 只看該作者
Nidhi Sharma,Jaya Bisht,S. K. Mishran (NMF) based methods have been proved to be effective in the task of community detection. However, real-world networks could be noisy and existing NMF based community detection methods are sensitive to the outliers and noise due to the utilization of the squared loss function to measure the quality
24#
發(fā)表于 2025-3-25 16:25:01 | 只看該作者
25#
發(fā)表于 2025-3-25 21:57:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:03:09 | 只看該作者
27#
發(fā)表于 2025-3-26 08:05:36 | 只看該作者
28#
發(fā)表于 2025-3-26 10:13:12 | 只看該作者
Walter Cedric Simo Tao Lee) within the allocated budget whose initial activation leads to the maximum number of influenced nodes. In reality, the influence probability between two users depends upon the context (i.e., tags). However, existing studies on this problem do not consider the tag specific influence probability. To
29#
發(fā)表于 2025-3-26 16:38:46 | 只看該作者
Vivek Laha,Rahul Kumar,Harsh Narayan Singh,S. K. Mishra) within the allocated budget whose initial activation leads to the maximum number of influenced nodes. In reality, the influence probability between two users depends upon the context (i.e., tags). However, existing studies on this problem do not consider the tag specific influence probability. To
30#
發(fā)表于 2025-3-26 17:16:43 | 只看該作者
Balendu Bhooshan Upadhyay,Priyanka Mishratagged events. These event-traces often manifest in hidden (possibly overlapping) communities of users with similar interests. Inferring these implicit communities is crucial for forming user profiles for improvements in recommendation and prediction tasks. Given only time-stamped geo-tagged traces
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
老河口市| 南丹县| 泽库县| 行唐县| 镇江市| 博野县| 阿拉善右旗| 保德县| 陕西省| 兴安盟| 建水县| 岑巩县| 松滋市| 尚志市| 华亭县| 沙洋县| 普兰店市| 板桥市| 宜春市| 历史| 安义县| 鲁甸县| 灌南县| 溆浦县| 宣武区| 肇东市| 珠海市| 元氏县| 太谷县| 蒙阴县| 青海省| 佳木斯市| 金堂县| 辽中县| 郧西县| 永福县| 兰州市| 锡林浩特市| 灌南县| 高唐县| 新郑市|