找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization with Multivalued Mappings; Theory, Applications Stephan Dempe,Vyacheslav Kalashnikov Book 2006 Springer-Verlag US 2006 Bilevel

[復(fù)制鏈接]
樓主: FORAY
31#
發(fā)表于 2025-3-26 23:22:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:35:21 | 只看該作者
Book 2006ilibrium constraints. The third part is on multivalued set-valued optimization. The chapters were written by outstanding experts in the areas of bilevel programming, mathematical programs with equilibrium (or complementarity) constraints (MPEC), and set-valued optimization problems. ..
33#
發(fā)表于 2025-3-27 05:42:17 | 只看該作者
34#
發(fā)表于 2025-3-27 12:07:35 | 只看該作者
Optimality criteria for bilevel programming problems using the radial subdifferentialentiable and generally discontinuous functions. To develop necessary and sufficient optimality conditions for the bilevel problem the radial-directional derivative and the radial subdifferential of these auxiliary functions are used.
35#
發(fā)表于 2025-3-27 15:39:12 | 只看該作者
A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constrairvation has lead to a number of weaker first order conditions, with M-stationarity being the strongest among these weaker conditions. Here we show that M-stationarity is a first order optimality condition under a very weak Guignard-type constraint qualification. We present a short and direct approach.
36#
發(fā)表于 2025-3-27 19:16:52 | 只看該作者
37#
發(fā)表于 2025-3-28 01:39:18 | 只看該作者
38#
發(fā)表于 2025-3-28 04:10:36 | 只看該作者
On the use of bilevel programming for solving a structural optimization problem with discrete variabet method provides in general a structure that is quite close to the optimal one in a small amount of effort. Furthermore the sequential complementarity method is able to find optimal structures in all the instances and compares favorably with a commercial integer program code for the same purpose.
39#
發(fā)表于 2025-3-28 08:12:16 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建瓯市| 南投市| 大理市| 宝山区| 彭水| 河东区| 辽阳市| 丰县| 邮箱| 绥德县| 广丰县| 锦州市| 外汇| 密云县| 吉安市| 贵溪市| 鸡泽县| 富川| 岑溪市| 肥西县| 原平市| 平凉市| 富顺县| 中阳县| 白玉县| 乌鲁木齐县| 建德市| 花莲县| 枣庄市| 淅川县| 米泉市| 西丰县| 东乡族自治县| 华安县| 梁山县| 锦屏县| 黄石市| 永济市| 寻乌县| 长沙市| 商南县|