找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization with Multivalued Mappings; Theory, Applications Stephan Dempe,Vyacheslav Kalashnikov Book 2006 Springer-Verlag US 2006 Bilevel

[復(fù)制鏈接]
樓主: FORAY
31#
發(fā)表于 2025-3-26 23:22:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:35:21 | 只看該作者
Book 2006ilibrium constraints. The third part is on multivalued set-valued optimization. The chapters were written by outstanding experts in the areas of bilevel programming, mathematical programs with equilibrium (or complementarity) constraints (MPEC), and set-valued optimization problems. ..
33#
發(fā)表于 2025-3-27 05:42:17 | 只看該作者
34#
發(fā)表于 2025-3-27 12:07:35 | 只看該作者
Optimality criteria for bilevel programming problems using the radial subdifferentialentiable and generally discontinuous functions. To develop necessary and sufficient optimality conditions for the bilevel problem the radial-directional derivative and the radial subdifferential of these auxiliary functions are used.
35#
發(fā)表于 2025-3-27 15:39:12 | 只看該作者
A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constrairvation has lead to a number of weaker first order conditions, with M-stationarity being the strongest among these weaker conditions. Here we show that M-stationarity is a first order optimality condition under a very weak Guignard-type constraint qualification. We present a short and direct approach.
36#
發(fā)表于 2025-3-27 19:16:52 | 只看該作者
37#
發(fā)表于 2025-3-28 01:39:18 | 只看該作者
38#
發(fā)表于 2025-3-28 04:10:36 | 只看該作者
On the use of bilevel programming for solving a structural optimization problem with discrete variabet method provides in general a structure that is quite close to the optimal one in a small amount of effort. Furthermore the sequential complementarity method is able to find optimal structures in all the instances and compares favorably with a commercial integer program code for the same purpose.
39#
發(fā)表于 2025-3-28 08:12:16 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呈贡县| 大荔县| 留坝县| 巨鹿县| 会同县| 金堂县| 多伦县| 延安市| 长海县| 通榆县| 都匀市| 海伦市| 探索| 湖北省| 绥棱县| 五河县| 焦作市| 津市市| 丘北县| 九龙城区| 马公市| 昌邑市| 喀什市| 肇东市| 湘潭市| 资源县| 申扎县| 千阳县| 青海省| 白河县| 湘阴县| 庐江县| 饶平县| 华宁县| 元阳县| 松阳县| 汝州市| 洞头县| 平潭县| 许昌市| 望城县|