找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization and Learning; 4th International Co Bernabé Dorronsoro,Lionel Amodeo,Patricia Ruiz Conference proceedings 2021 Springer Nature

[復制鏈接]
樓主: trace-mineral
31#
發(fā)表于 2025-3-26 21:22:03 | 只看該作者
32#
發(fā)表于 2025-3-27 04:49:02 | 只看該作者
A Learning-Based Iterated Local Search Algorithm for Solving the Traveling Salesman Probleme well-known NP-Hard Traveling Salesman Problem. This metaheuristic basically employs single local search and perturbation operators for finding the (near-) optimal solution. In this paper, by incorporating multiple local search and perturbation operators, we explore the use of reinforcement learnin
33#
發(fā)表于 2025-3-27 08:50:53 | 只看該作者
34#
發(fā)表于 2025-3-27 13:18:42 | 只看該作者
A Comparison of Learnheuristics Using Different Reward Functions to Solve the Set Covering Problem machine learning. The concept behind the hybridization of both worlds is called Learnheuristics which allows to improve optimization methods through machine learning techniques where the input data for learning is the data produced by the optimization methods during the search process. Among the mo
35#
發(fā)表于 2025-3-27 13:49:39 | 只看該作者
A Bayesian Optimisation Approach for?Multidimensional Knapsack Problemultidimensional knapsack problem with a large number of items and knapsack constraints, a two-level formulation is presented to take advantage of the global optimisation capability of the Bayesian optimisation approach, and the efficiency of integer programming solvers on small problems. The first l
36#
發(fā)表于 2025-3-27 20:28:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:53 | 只看該作者
Guiding Representation Learning in Deep Generative Models with Policy Gradientsion. Using such a representation as input to Reinforcement Learning (RL) approaches may reduce learning time, enable domain transfer or improve interpretability of the model. However, current state-of-the-art approaches that combine VAE with RL fail at learning good performing policies on certain RL
38#
發(fā)表于 2025-3-28 02:22:02 | 只看該作者
Deep Reinforcement Learning for?Dynamic Pricing of Perishable Productsic pricing of perishable products using DQN value function approximator. A model-free reinforcement learning approach is used to maximize revenue for a perishable item with fixed initial inventory and selling horizon. The demand is influenced by the price and freshness of the product. The convention
39#
發(fā)表于 2025-3-28 09:54:26 | 只看該作者
An Exploratory Analysis on a Disinformation Datasete the effects of this type of content have their impacts in the most diverse areas and generate more and more impacts within society. Automated fact-checking systems have been proposed by applying supervised machine learning techniques to assist in filtering fake news. However, two challenges are st
40#
發(fā)表于 2025-3-28 11:38:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
资源县| 扶余县| 谷城县| 新巴尔虎左旗| 麻栗坡县| 云龙县| 客服| 克东县| 南木林县| 福建省| 洪雅县| 河津市| 南岸区| 南京市| 新巴尔虎右旗| 濮阳县| 长岭县| 沙洋县| 米林县| 麟游县| 揭西县| 南木林县| 都昌县| 融水| 射洪县| 富蕴县| 海安县| 漯河市| 克拉玛依市| 五台县| 垣曲县| 花垣县| 宿松县| 大名县| 响水县| 上蔡县| 微山县| 吴堡县| 达尔| 工布江达县| 巴彦淖尔市|