找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Optimization and Computational Fluid Dynamics; Dominique Thévenin,Gábor Janiga Book 2008 Springer-Verlag Berlin Heidelberg 2008 Evolutiona

[復(fù)制鏈接]
樓主: HABIT
41#
發(fā)表于 2025-3-28 14:43:00 | 只看該作者
A Few Illustrative Examples of CFD-based Optimizationcontinuation of our previous studies, introducing new results and new aspects..The last case presented here is a new proposal to optimize the model parameters of an engineering turbulence model (Case C)..In all the presented cases, an Evolutionary Algorithm (EA) is applied to find the optimal config
42#
發(fā)表于 2025-3-28 22:26:03 | 只看該作者
43#
發(fā)表于 2025-3-28 23:25:37 | 只看該作者
Adjoint Methods for Shape Optimizations state equations. The elimination of field integrals expressed in terms of variations in grid metrics leads to a formulation which is independent of the grid type and can thus be employed with either structured or unstructured grids. From the physical point of view, the minimization of viscous loss
44#
發(fā)表于 2025-3-29 06:46:31 | 只看該作者
Efficient Deterministic Approaches for Aerodynamic Shape Optimizationt, then derives the adjoint problem and finally does the discretization of the so obtained adjoint flow equations. In the discrete case, one takes the discretized flow equations for the derivation of the discrete adjoint problem. This can be automated by so-called algorithmic differentiation (AD) to
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长宁县| 延川县| 屏边| 汪清县| 应城市| 贵阳市| 苍溪县| 平和县| 翼城县| 泗阳县| 三江| 紫金县| 伊春市| 岳普湖县| 竹北市| 临武县| 荣成市| 新和县| 惠来县| 博野县| 安仁县| 桐庐县| 易门县| 辽阳市| 海丰县| 莎车县| 阿巴嘎旗| 凤冈县| 台湾省| 苍南县| 益阳市| 青海省| 定结县| 星座| 石家庄市| 贺州市| 涪陵区| 教育| 景泰县| 清流县| 正阳县|