找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization; Proceedings of the F Szymon Dolecki Conference proceedings 1989 Springer-Verlag Berlin Heidelberg 1989 Linear Programming.Non

[復制鏈接]
樓主: 一個希拉里
11#
發(fā)表于 2025-3-23 10:24:27 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:45 | 只看該作者
Numerical study of projective methods for linear programming,a projective algorithm with versions of the simplex method, our purpose is to identify significant characteristics and limitations of a specific class of projective methods. A number of variations are possible within this class, and this study includes a comparison of single-phase and two-phase vers
13#
發(fā)表于 2025-3-23 19:11:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:08:36 | 只看該作者
On the method of analytic centers for solving smooth convex programs,rove that the analytic center of the feasible set provides a two-sided ellipsoidal approximation of this set, whose tightness, as well as the global rate of convergence of the algorithm, only depends on the number of constraints and on a relative Lipschitz constant of the Hessian matrices of the con
15#
發(fā)表于 2025-3-24 04:49:18 | 只看該作者
16#
發(fā)表于 2025-3-24 09:26:20 | 只看該作者
Variational convergence and perturbed proximal method for saddle point problems,hip between the metric-convergence and the Mosco-convergence is studied. It is also shown that the variational convergence theory enables us to explain the stability of some methods for finding saddle points. The method used here as a prototype is the proximal regularization method.
17#
發(fā)表于 2025-3-24 14:41:15 | 只看該作者
A unified approach to projective algorithms for linear programming,gh to include other known projective methods for linear programming and fractional linear programming. It also provides a framework to analyze affine interior point methods and to relate them to projective methods.
18#
發(fā)表于 2025-3-24 16:07:12 | 只看該作者
19#
發(fā)表于 2025-3-24 21:13:26 | 只看該作者
20#
發(fā)表于 2025-3-25 02:02:42 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岚皋县| 渭源县| 土默特右旗| 汉中市| 揭西县| 静海县| 台中市| 昆明市| 宜章县| 浦江县| 大姚县| 会同县| 浦江县| 雅江县| 汕尾市| 峡江县| 扎鲁特旗| 孟连| 江油市| 全椒县| 宁安市| 永丰县| 安泽县| 杂多县| 三明市| 承德市| 墨竹工卡县| 晋江市| 东乡| 仪征市| 石泉县| 潜山县| 观塘区| 和平县| 汉源县| 临汾市| 泰宁县| 固始县| 嵩明县| 麟游县| 宁晋县|