找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Transportation Networks; Models and Theory Marc Bernot,Vicent Caselles,Jean-Michel Morel Book 2009 Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: JADE
31#
發(fā)表于 2025-3-27 00:40:24 | 只看該作者
32#
發(fā)表于 2025-3-27 02:25:29 | 只看該作者
33#
發(fā)表于 2025-3-27 07:30:34 | 只看該作者
Interior and Boundary Regularity,point .∈. (Section 8.2). These definitions and the fact that connected components of an optimal traffic plan are themselves optimal traffic plans will permit to perform some surgery leading to the main regularity theorems. The first “interior” regularity theorem (Section 8.3) states that outside the
34#
發(fā)表于 2025-3-27 10:55:17 | 只看該作者
35#
發(fā)表于 2025-3-27 16:37:48 | 只看該作者
Irrigability and Dimension,s irrigable with respect to α. In that case, notice that μ is also β-irrigable for β>α. This observation proves the existence of a critical exponent α associated with μ and defined as the smallest exponent such that μ is α-irrigable. The aim of the chapter is to link this exponent to more classical
36#
發(fā)表于 2025-3-27 18:17:15 | 只看該作者
37#
發(fā)表于 2025-3-28 01:15:55 | 只看該作者
The Gilbert-Steiner Problem, setting by Gilbert in [44]. Following his steps, we first consider the irrigation problem from a source to two Dirac masses. If the optimal structure is made of three edges, the first order condition for a local optimum yields constraints on the angles between the edges at the bifurcation point (se
38#
發(fā)表于 2025-3-28 02:45:04 | 只看該作者
Dirac to Lebesgue Segment: A Case Study,ase of Monge-Kantorovich transport, as illustrated by Figure 13.1, an optimal traffic plan is totally spread in the sense that fibers connect every point of the segment with the source. If α=0, which corresponds to the problem of Steiner, an optimal traffic plan is such that all the mass is first co
39#
發(fā)表于 2025-3-28 10:16:05 | 只看該作者
40#
發(fā)表于 2025-3-28 14:25:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高安市| 建始县| 金阳县| 洪江市| 济源市| 吉林省| 琼中| 孝义市| 尖扎县| 理塘县| 洪雅县| 潜山县| 塔城市| 通河县| 察哈| 宜宾县| 敦化市| 盱眙县| 关岭| 伊吾县| 永靖县| 犍为县| 瓦房店市| 汉阴县| 开封市| 雷波县| 会宁县| 深圳市| 白银市| 黄山市| 高唐县| 德昌县| 湄潭县| 额敏县| 东丰县| 茂名市| 林周县| 藁城市| 高要市| 蒙阴县| 东源县|