找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Spatial Interaction and the Gravity Model; Sven Erlander Book 1980 Springer-Verlag Berlin Heidelberg 1980 Gravitationsmodell (Wirt

[復(fù)制鏈接]
樓主: HEMI
31#
發(fā)表于 2025-3-26 23:39:27 | 只看該作者
Some Comments Upon Entropy MaximizingIt is interesting to note that the absolutely continuous distributions discussed in the previous section are the solutions to the following three problems:.(Kagan-Linnik-Radhakrishna Rao, 1973).
32#
發(fā)表于 2025-3-27 05:06:44 | 只看該作者
The Gravity Model as the Optimal Solution of the Entropy Constrained Aggregate Linear ProgramThe entropy constrained aggregate linear program (5.2) has linear objective function and convex feasible region. Thus there is always an optimal solution, if there is any feasible point at all.
33#
發(fā)表于 2025-3-27 09:12:58 | 只看該作者
Sensitivity and the Dual ProgramIn Chapter 6 we briefly discussed the value of the objective function . at an optimal solution X* as a function of the entropy level .. We shall now make this more precise and also consider the dependence of the other right hand members a and b.
34#
發(fā)表于 2025-3-27 13:16:13 | 只看該作者
Interactivity and EntropyThe most commonly used measures of accessibility are of the Hansen type (Hansen, 1959), i. e. .“Accessibility ... is a slippery notion., one of those common terms that everyone uses until faced with the problem of defining and measuring it”, Gould (1969).
35#
發(fā)表于 2025-3-27 15:19:45 | 只看該作者
Benefit Measures and the Gravity ModelIn Chapter 5 we introduced total costs . as a natural efficieney measure. Together with the entropy constraint this led into the formulation of our minimum problem (5.1) (or equivalently, (5.2)).
36#
發(fā)表于 2025-3-27 20:10:01 | 只看該作者
Modal SplitWe have already mentioned that the minimization problem (5.1) can be extended in several directions. Here we shall discuss simple extensions to modal split formulations.
37#
發(fā)表于 2025-3-28 01:17:22 | 只看該作者
38#
發(fā)表于 2025-3-28 03:20:37 | 只看該作者
Entropy Constrained Aggregate Linear ProgramWe saw in the previous chapter that the original problem in utility form, problem (12.5) which is a . formulation, corresponds to a . formulation, problem (12.9), in the sense that optimal solutions to the latter are optimal also in the former.
39#
發(fā)表于 2025-3-28 07:15:52 | 只看該作者
Lecture Notes in Economics and Mathematical Systemshttp://image.papertrans.cn/o/image/702924.jpg
40#
發(fā)表于 2025-3-28 11:40:28 | 只看該作者
https://doi.org/10.1007/978-3-642-45515-5Gravitationsmodell (Wirtsch; ); Gravity; Interaction; Optimierung; Transportproblem; algorithms; linear opt
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
恩施市| 泸州市| 邵东县| 郴州市| 勐海县| 聂拉木县| 河曲县| 广河县| 巴南区| 衡阳县| 格尔木市| 阳新县| 新竹县| 通许县| 当雄县| 北宁市| 天柱县| 沁水县| 信丰县| 调兵山市| 资中县| 台中市| 曲沃县| 龙州县| 苗栗市| 吉林省| 鞍山市| 博兴县| 双桥区| 永修县| 贵阳市| 革吉县| 正阳县| 封丘县| 新安县| 牙克石市| 赤壁市| 阳西县| 大新县| 南京市| 新昌县|