找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Shape Design for Elliptic Systems; Olivier Pironneau Book 1984 Springer-Verlag New York Inc. 1984 Design.Diskretisation.Elliptisch

[復(fù)制鏈接]
查看: 44240|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:15:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Optimal Shape Design for Elliptic Systems
編輯Olivier Pironneau
視頻videohttp://file.papertrans.cn/703/702920/702920.mp4
叢書名稱Scientific Computation
圖書封面Titlebook: Optimal Shape Design for Elliptic Systems;  Olivier Pironneau Book 1984 Springer-Verlag New York Inc. 1984 Design.Diskretisation.Elliptisch
描述The study of optimal shape design can be arrived at by asking the following question: "What is the best shape for a physical system?" This book is an applications-oriented study of such physical systems; in particular, those which can be described by an elliptic partial differential equation and where the shape is found by the minimum of a single criterion function. There are many problems of this type in high-technology industries. In fact, most numerical simulations of physical systems are solved not to gain better understanding of the phenomena but to obtain better control and design. Problems of this type are described in Chapter 2. Traditionally, optimal shape design has been treated as a branch of the calculus of variations and more specifically of optimal control. This subject interfaces with no less than four fields: optimization, optimal control, partial differential equations (PDEs), and their numerical solutions-this is the most difficult aspect of the subject. Each of these fields is reviewed briefly: PDEs (Chapter 1), optimization (Chapter 4), optimal control (Chapter 5), and numerical methods (Chapters 1 and 4).
出版日期Book 1984
關(guān)鍵詞Design; Diskretisation; Elliptische Differentialgleichung; Konstruktion; Optimale Regelung; boundary elem
版次1
doihttps://doi.org/10.1007/978-3-642-87722-3
isbn_softcover978-3-642-87724-7
isbn_ebook978-3-642-87722-3Series ISSN 1434-8322 Series E-ISSN 2198-2589
issn_series 1434-8322
copyrightSpringer-Verlag New York Inc. 1984
The information of publication is updating

書目名稱Optimal Shape Design for Elliptic Systems影響因子(影響力)




書目名稱Optimal Shape Design for Elliptic Systems影響因子(影響力)學(xué)科排名




書目名稱Optimal Shape Design for Elliptic Systems網(wǎng)絡(luò)公開度




書目名稱Optimal Shape Design for Elliptic Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Optimal Shape Design for Elliptic Systems被引頻次




書目名稱Optimal Shape Design for Elliptic Systems被引頻次學(xué)科排名




書目名稱Optimal Shape Design for Elliptic Systems年度引用




書目名稱Optimal Shape Design for Elliptic Systems年度引用學(xué)科排名




書目名稱Optimal Shape Design for Elliptic Systems讀者反饋




書目名稱Optimal Shape Design for Elliptic Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:27 | 只看該作者
Design Problems Solved by Standard Optimal Control Theory,This approach ought to be well understood before proceeding to the general case where the control is looked at as a geometric element of the system. For further details and examples, the reader is referred to [40].
板凳
發(fā)表于 2025-3-22 03:11:30 | 只看該作者
地板
發(fā)表于 2025-3-22 05:42:59 | 只看該作者
Book 1984applications-oriented study of such physical systems; in particular, those which can be described by an elliptic partial differential equation and where the shape is found by the minimum of a single criterion function. There are many problems of this type in high-technology industries. In fact, most
5#
發(fā)表于 2025-3-22 10:13:57 | 只看該作者
ruck auf der Anbieterseite, steigende Ressourcenkosten sowie verschiedenste Verschiebungen auf der Nachfragerseite beeinflussen das unternehmerische Kosten- und Risikoprofil und damit die Refinanzierungsstruktur eines Unternehmens..Gesetzliche Regelungen, wie sie sich z.?B. aus dem international gül
6#
發(fā)表于 2025-3-22 16:42:11 | 只看該作者
Design Problems Solved by Standard Optimal Control Theory,], [29])..We give three examples of this type and use these examples as an opportunity to review the techniques of optimal control developed in [40]. This approach ought to be well understood before proceeding to the general case where the control is looked at as a geometric element of the system. F
7#
發(fā)表于 2025-3-22 17:18:49 | 只看該作者
Optimality Conditions,ms may be developed to find feasible numerical solutions. Although it is sufficient to know how to derive such conditions on discrete problems only, it is useful to begin with the study of the continuous case since it is simpler and it may give a valuable interpretation to the solution.
8#
發(fā)表于 2025-3-22 22:21:39 | 只看該作者
Discretization with Finite Elements,rential equations, the finite element method (FEM) is the obvious one to choose to use when the domains are the unknowns. We see that the FEM yields much simpler gradients than either the finite difference method or the boundary element method; these two methods are presented in Chapter 8. The FEM i
9#
發(fā)表于 2025-3-23 02:25:48 | 只看該作者
10#
發(fā)表于 2025-3-23 05:38:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台前县| 博客| 台东县| 汝州市| 体育| 镇平县| 平顺县| 团风县| 南川市| 吉木萨尔县| 宜良县| 洪雅县| 昌图县| 临高县| 绥中县| 景德镇市| 收藏| 会同县| 漠河县| 敦煌市| 苍南县| 桐梓县| 新干县| 皋兰县| 含山县| 台北市| 满城县| 宁德市| 揭西县| 华池县| 清原| 泉州市| 琼海市| 大厂| 邯郸县| 湛江市| 莒南县| 黄大仙区| 顺义区| 尚志市| 固镇县|