找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control of PDEs under Uncertainty; An Introduction with Jesús Martínez-Frutos,Francisco Periago Esparza Book 2018 The Author(s), un

[復(fù)制鏈接]
樓主: Buchanan
31#
發(fā)表于 2025-3-27 00:40:17 | 只看該作者
Numerical Resolution of Risk Averse Optimal Control Problems,em ., as defined in Sect. 2.2. The numerical approximation of the associated statistics combines an adaptive, anisotropic, non-intrusive, Stochastic Galerkin approach for the numerical resolution of the underlying state and adjoint equations with a standard Monte-Carlo (MC) sampling method for numerical integration in the random domain.
32#
發(fā)表于 2025-3-27 05:05:10 | 只看該作者
Jesús Martínez-Frutos,Francisco Periago EsparzaOffers a smooth transition from optimal control of deterministic PDEs to optimal control of random PDEs.Covers uncertainty modelling in control problems, variational formulation of random PDEs, existe
33#
發(fā)表于 2025-3-27 09:11:46 | 只看該作者
Miscellaneous Topics and Open Problems,In this final chapter we discuss some related topics to the basic methodology presented in detail in the previous chapters. These topics are related to (i) time-dependent problems, and (ii) physical interpretation of robust and risk-averse optimal controls. We also list a number of challenging problems in the field of control under uncertainty.
34#
發(fā)表于 2025-3-27 12:32:42 | 只看該作者
SpringerBriefs in Mathematicshttp://image.papertrans.cn/o/image/702834.jpg
35#
發(fā)表于 2025-3-27 14:24:40 | 只看該作者
https://doi.org/10.1007/978-3-319-98210-6Partial differential equations with random inputs; Stochastic expansion methods; Robust optimal contro
36#
發(fā)表于 2025-3-27 20:46:20 | 只看該作者
37#
發(fā)表于 2025-3-27 22:35:58 | 只看該作者
Mathematical Analysis of Optimal Control Problems Under Uncertainty, tensor product of Hilbert spaces or abstract functions, i.e., functions with values in Banach or Hilbert spaces. However, tensor products of Hilbert spaces have the advantage that the numerical approximation of such random PDEs becomes very natural in such a formalism.
38#
發(fā)表于 2025-3-28 05:49:04 | 只看該作者
39#
發(fā)表于 2025-3-28 08:40:31 | 只看該作者
40#
發(fā)表于 2025-3-28 11:28:57 | 只看該作者
Introduction,em’s parameters, such as its geometry, initial and/or boundary conditions, external forces and material properties (diffusion coefficients, elasticity modulus, etc.), induces additional errors, called ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平昌县| 铁岭县| 太保市| 依兰县| 大埔县| 平山县| 巴中市| 乌鲁木齐市| 甘孜县| 阳信县| 英吉沙县| 高唐县| 阿拉尔市| 定陶县| 荥阳市| 珠海市| 灵台县| 安陆市| 皋兰县| 佳木斯市| 姚安县| 靖宇县| 开阳县| 阿拉尔市| 山西省| 南澳县| 开阳县| 锦屏县| 额济纳旗| 图片| 柳河县| 天津市| 沽源县| 方正县| 浑源县| 宣化县| 志丹县| 甘泉县| 屯昌县| 鹤壁市| 广宗县|