找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control for Mathematical Models of Cancer Therapies; An Application of Ge Heinz Sch?ttler,Urszula Ledzewicz Book 2015 Springer Scie

[復制鏈接]
查看: 51329|回復: 44
樓主
發(fā)表于 2025-3-21 19:41:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Optimal Control for Mathematical Models of Cancer Therapies
副標題An Application of Ge
編輯Heinz Sch?ttler,Urszula Ledzewicz
視頻videohttp://file.papertrans.cn/703/702818/702818.mp4
概述Applies geometric optimal control to real life problems arising in cancer research, for the first time published in book form.Combines rigorous mathematical analysis with biomedical background and int
叢書名稱Interdisciplinary Applied Mathematics
圖書封面Titlebook: Optimal Control for Mathematical Models of Cancer Therapies; An Application of Ge Heinz Sch?ttler,Urszula Ledzewicz Book 2015 Springer Scie
描述.This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style.?Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful..
出版日期Book 2015
關鍵詞Optimal control; anti-angiogenic treatment; geometric optimal control; mathematical models; mathematical
版次1
doihttps://doi.org/10.1007/978-1-4939-2972-6
isbn_softcover978-1-4939-4279-4
isbn_ebook978-1-4939-2972-6Series ISSN 0939-6047 Series E-ISSN 2196-9973
issn_series 0939-6047
copyrightSpringer Science+Business Media, LLC 2015
The information of publication is updating

書目名稱Optimal Control for Mathematical Models of Cancer Therapies影響因子(影響力)




書目名稱Optimal Control for Mathematical Models of Cancer Therapies影響因子(影響力)學科排名




書目名稱Optimal Control for Mathematical Models of Cancer Therapies網絡公開度




書目名稱Optimal Control for Mathematical Models of Cancer Therapies網絡公開度學科排名




書目名稱Optimal Control for Mathematical Models of Cancer Therapies被引頻次




書目名稱Optimal Control for Mathematical Models of Cancer Therapies被引頻次學科排名




書目名稱Optimal Control for Mathematical Models of Cancer Therapies年度引用




書目名稱Optimal Control for Mathematical Models of Cancer Therapies年度引用學科排名




書目名稱Optimal Control for Mathematical Models of Cancer Therapies讀者反饋




書目名稱Optimal Control for Mathematical Models of Cancer Therapies讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:45:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:21:18 | 只看該作者
地板
發(fā)表于 2025-3-22 08:38:32 | 只看該作者
Optimal Control for Problems with a Quadratic Cost Functional on the Therapeutic Agents,trol in the objective is taken as a positive definite quadratic function. The mathematical advantages of such a formulation are obvious: the Hamiltonian . for the optimal control problem becomes strictly convex in the control . and thus has a unique minimizer, albeit only in the state-multiplier spa
5#
發(fā)表于 2025-3-22 09:37:09 | 只看該作者
Optimal Control of Mathematical Models for Antiangiogenic Treatments,herapeutically sensitive cells to heterogeneous structures of cell populations with varying sensitivities or even resistance. From an optimal control point of view, optimal treatment schedules change from bang-bang solutions with upfront dosing (that correspond to classical MTD approaches in medicin
6#
發(fā)表于 2025-3-22 15:37:44 | 只看該作者
7#
發(fā)表于 2025-3-22 19:23:08 | 只看該作者
8#
發(fā)表于 2025-3-22 22:43:03 | 只看該作者
9#
發(fā)表于 2025-3-23 03:27:36 | 只看該作者
Concluding Remarks,ents. In the administration of cancer treatments, these questions are still far from being answered conclusively. In this text, we have explored what can be said about this topic from an analysis of minimally parameterized models described by ordinary differential equations using an optimal control
10#
發(fā)表于 2025-3-23 09:04:34 | 只看該作者
Heinz Sch?ttler,Urszula Ledzewicz it describes the structure and evaluation of the learner model implemented within VIS (the Vygotskian Instructional System). This software explores the way that Vygotsky’s Zone of Proximal Development can be used in the design of learner models. This theoretical foundation requires the system to ad
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 14:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
梁山县| 班戈县| 维西| 浦江县| 巨野县| 扶风县| 呼玛县| 长春市| 华容县| 双辽市| 榕江县| 根河市| 宜昌市| 乃东县| 泗洪县| 年辖:市辖区| 登封市| 宣化县| 南平市| 江安县| 徐州市| 新邵县| 呈贡县| 景东| 文登市| 兰考县| 神农架林区| 沛县| 康保县| 卓资县| 大同县| 梨树县| 黄浦区| 健康| 广水市| 象山县| 长岭县| 太原市| 额尔古纳市| 德州市| 林口县|