找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations; Martino Bardi,Italo Capuzzo-Dolcetta Book 1997 Springer Scie

[復制鏈接]
樓主: 拼圖游戲
31#
發(fā)表于 2025-3-26 20:56:43 | 只看該作者
2197-1803 a broad audience of graduate students and researchers in maThe purpose of the present book is to offer an up-to-date account of the theory of viscosity solutions of first order partial differential equations of Hamilton-Jacobi type and its applications to optimal deterministic control and different
32#
發(fā)表于 2025-3-27 01:48:43 | 只看該作者
Optimal control problems with continuous value functions: unrestricted state space,Dynamic Programming Principle and derive from it the appropriate Hamilton-Jacobi-Bellman equation for the value function. This allows us to apply the theory of Chapter II, and some extensions of it, to prove that the value function can in fact be characterized as the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation.
33#
發(fā)表于 2025-3-27 06:50:42 | 只看該作者
Book 1997f Hamilton-Jacobi type and its applications to optimal deterministic control and differential games. The theory of viscosity solutions, initiated in the early 80‘s by the papers of M.G. Crandall and P.L. Lions [CL81, CL83], M.G. Crandall, L.C. Evans and P.L. Lions [CEL84] and P.L. Lions‘ influential
34#
發(fā)表于 2025-3-27 11:13:44 | 只看該作者
35#
發(fā)表于 2025-3-27 17:13:10 | 只看該作者
Discontinuous viscosity solutions and applications,mi-limits, that we call weak limits in the viscosity sense, which are semicontinuous sub- or supersolutions. These weak limits are used extensively in Chapters VI and VII to study the convergence of approximation schemes and several asymptotic limits, even for control problems where the value function is continuous.
36#
發(fā)表于 2025-3-27 19:59:49 | 只看該作者
9樓
37#
發(fā)表于 2025-3-27 23:45:52 | 只看該作者
9樓
38#
發(fā)表于 2025-3-28 03:59:48 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 08:33:06 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 10:26:51 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
塘沽区| 积石山| 苗栗市| 噶尔县| 南岸区| 从化市| 博白县| 潍坊市| 政和县| 澜沧| 台山市| 乌拉特后旗| 北川| 治县。| 淮安市| 鄯善县| 信宜市| 防城港市| 金坛市| 枝江市| 吉林市| 堆龙德庆县| 庆阳市| 武平县| 新昌县| 新密市| 阳江市| 博罗县| 凤凰县| 崇阳县| 田林县| 赤壁市| 台州市| 射阳县| 沁源县| 土默特左旗| 蕉岭县| 淮阳县| 通州市| 阿勒泰市| 怀仁县|