找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control; Calculus of Variatio R. Bulirsch,A. Miele,K. Well Book 1993 Springer Basel AG 1993 Calculus of Variations.Eigenvalue.Evolu

[復(fù)制鏈接]
樓主: ergonomics
21#
發(fā)表于 2025-3-25 04:58:41 | 只看該作者
22#
發(fā)表于 2025-3-25 07:32:10 | 只看該作者
23#
發(fā)表于 2025-3-25 13:07:07 | 只看該作者
24#
發(fā)表于 2025-3-25 15:59:16 | 只看該作者
25#
發(fā)表于 2025-3-25 20:47:14 | 只看該作者
Semidiscrete Ritz-Galerkin Approximation of Nonlinear Parabolic Boundary Control Problemste is considered. Related to this problem a corresponding approximate one is defined, where the equation of state is tackled by a semidiscrete Ritz- Galerkin method and the set of admissible controls is discretized. It is shown that the optimal controls of the approximate problems converge strongly
26#
發(fā)表于 2025-3-26 01:26:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:22 | 只看該作者
28#
發(fā)表于 2025-3-26 11:51:28 | 只看該作者
Reduced SQP Methods for Nonlinear Heat Conduction Control Problemshe discretized form of such a problem and apply a reduced SQP method for the numerical solution of the optimization problem. This method makes use of the sparsity and offers the advantage to approximate second order information by a quasi Newton update which is practicable with regard to storage. Th
29#
發(fā)表于 2025-3-26 15:07:44 | 只看該作者
30#
發(fā)表于 2025-3-26 18:03:10 | 只看該作者
A Discrete Stabilizing Study Strategy for a Student Related Problem under Uncertaintynimum expenditure of effort Later on, Bondi (1982), Parlar (1984), Cheng and Teo (1987) as well as Lee and Leitmann (1990) discussed, modified and extended the problem. Lee and Leitmann (1991) also considered a related problem in which the system parameters are uncertain but bounded, and the results
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苗栗县| 巫山县| 巴塘县| 太仆寺旗| 新晃| 米脂县| 青川县| 集贤县| 常山县| 海城市| 兰州市| 郓城县| 苏尼特右旗| 沅江市| 扎鲁特旗| 藁城市| 河池市| 拜泉县| 越西县| 海原县| 怀宁县| 江津市| 台南县| 平湖市| 凌云县| 海林市| 襄樊市| 桃江县| 娄底市| 洛宁县| 陆丰市| 东兰县| 都昌县| 那坡县| 安溪县| 彭泽县| 临西县| 四平市| 池州市| 保亭| 措美县|