找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems; Martin Gugat Book 2015 The Author(s) 2015 Boundary stabilizatio

[復制鏈接]
樓主: 頻率
11#
發(fā)表于 2025-3-23 11:18:47 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:44 | 只看該作者
https://doi.org/10.1007/978-3-319-18890-4Boundary stabilization; Hyperbolic partial differential equations; Hyperbolic system; Optimal control p
13#
發(fā)表于 2025-3-23 18:32:56 | 只看該作者
Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems978-3-319-18890-4Series ISSN 2191-8112 Series E-ISSN 2191-8120
14#
發(fā)表于 2025-3-23 22:16:02 | 只看該作者
15#
發(fā)表于 2025-3-24 04:09:33 | 只看該作者
Exact Controllability,The question of exact controllability (see Lions, SIAM Rev. ., 1–68, 1988; Russell, J. Math. Anal. Appl. ., 542–560, 1967) is: Which states can be reached exactly at given control time . with a given set of control functions starting at time zero with an initial state from a prescribed set?
16#
發(fā)表于 2025-3-24 07:35:45 | 只看該作者
Optimal Exact Control,ive function that models our preferences. This leads to an optimal control problem where the prescribed end conditions can be regarded as equality constraints. Often, the control costs that are given by the norm of the control function are an interesting objective function.
17#
發(fā)表于 2025-3-24 14:08:10 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:51 | 只看該作者
Introduction,e for example Gugat et al., J. Optim. Theory Appl. ., 589–616, 2005; Work et al., Appl. Math. Res. Express ., 1–35, 2010). These models allow to study how control action influences the states in these systems.
19#
發(fā)表于 2025-3-24 21:12:05 | 只看該作者
2191-8112 s, and Burgers equations as typical examples to illustrate l.This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.? The wave equation is us
20#
發(fā)表于 2025-3-25 02:22:39 | 只看該作者
Nonlinear Systems,yperbolic system, the solution can loose a part of its regularity after a finite time. For example, classical solutions typically break down after finite time since there is a blow up in certain partial derivatives.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 09:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
分宜县| 黎城县| 彭山县| 临潭县| 威信县| 怀远县| 万载县| 三都| 广德县| 黄陵县| 凉山| 淳安县| 杨浦区| 宁乡县| 巴青县| 阳江市| 内黄县| 紫金县| 平陆县| 丰台区| 阳城县| 罗平县| 武夷山市| 闻喜县| 安化县| 宁晋县| 灵璧县| 杭锦旗| 囊谦县| 广丰县| 柏乡县| 五常市| 北碚区| 灵石县| 德兴市| 眉山市| 普定县| 牙克石市| 新乡县| 祥云县| 航空|