找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems; Martin Gugat Book 2015 The Author(s) 2015 Boundary stabilizatio

[復(fù)制鏈接]
樓主: 頻率
11#
發(fā)表于 2025-3-23 11:18:47 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:44 | 只看該作者
https://doi.org/10.1007/978-3-319-18890-4Boundary stabilization; Hyperbolic partial differential equations; Hyperbolic system; Optimal control p
13#
發(fā)表于 2025-3-23 18:32:56 | 只看該作者
Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems978-3-319-18890-4Series ISSN 2191-8112 Series E-ISSN 2191-8120
14#
發(fā)表于 2025-3-23 22:16:02 | 只看該作者
15#
發(fā)表于 2025-3-24 04:09:33 | 只看該作者
Exact Controllability,The question of exact controllability (see Lions, SIAM Rev. ., 1–68, 1988; Russell, J. Math. Anal. Appl. ., 542–560, 1967) is: Which states can be reached exactly at given control time . with a given set of control functions starting at time zero with an initial state from a prescribed set?
16#
發(fā)表于 2025-3-24 07:35:45 | 只看該作者
Optimal Exact Control,ive function that models our preferences. This leads to an optimal control problem where the prescribed end conditions can be regarded as equality constraints. Often, the control costs that are given by the norm of the control function are an interesting objective function.
17#
發(fā)表于 2025-3-24 14:08:10 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:51 | 只看該作者
Introduction,e for example Gugat et al., J. Optim. Theory Appl. ., 589–616, 2005; Work et al., Appl. Math. Res. Express ., 1–35, 2010). These models allow to study how control action influences the states in these systems.
19#
發(fā)表于 2025-3-24 21:12:05 | 只看該作者
2191-8112 s, and Burgers equations as typical examples to illustrate l.This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.? The wave equation is us
20#
發(fā)表于 2025-3-25 02:22:39 | 只看該作者
Nonlinear Systems,yperbolic system, the solution can loose a part of its regularity after a finite time. For example, classical solutions typically break down after finite time since there is a blow up in certain partial derivatives.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福贡县| 娄底市| 阿巴嘎旗| 大埔区| 天津市| 吉木萨尔县| 兴山县| 兴安盟| 杂多县| 叙永县| 桐柏县| 东阿县| 大兴区| 龙陵县| 杭锦后旗| 上杭县| 乐清市| 贡山| 南充市| 喀喇沁旗| 壤塘县| 黄浦区| 宁津县| 三穗县| 辽宁省| 辉南县| 宝鸡市| 荃湾区| 道真| 厦门市| 班玛县| 博湖县| 宁国市| 革吉县| 区。| 绥芬河市| 峨边| 上栗县| 临沧市| 清水县| 文化|