找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ophthalmic Medical Image Analysis; 10th International W Bhavna Antony,Hao Chen,Yalin Zheng Conference proceedings 2023 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: Lensometer
21#
發(fā)表于 2025-3-25 04:31:27 | 只看該作者
,Glaucoma Progression Detection and?Humphrey Visual Field Prediction Using Discriminative and?GeneraiT backbone. The model predicts future VFs with Pointwise Mean Absolute Error (PMAE) as low as 2.15 dB for mild VF deficits and is the first to extend VF prediction up to 10 years into the future. Our models are trained and validated on our ‘62K+’ dataset, the largest available of VFs to-date includ
22#
發(fā)表于 2025-3-25 09:04:22 | 只看該作者
,Utilizing Meta Pseudo Labels for?Semantic Segmentation of?Targeted Optic Nerve Features,work architecture, training data, and post-processing as an existing deep-learning approach, AxonDeep, to establish a fair comparison. The evaluations performed involved training four models using 10%, 25%, 50%, and 100% of the labeled images (n?=?26) alongside unlabeled images (n?=?50). Results fro
23#
發(fā)表于 2025-3-25 12:48:02 | 只看該作者
,Privileged Modality Guided Network for?Retinal Vessel Segmentation in?Ultra-Wide-Field Images, multi-scale location-aware fusion module is proposed and embedded into the segmentation network for reducing the boundary artifacts. Finally, experiments are performed on a dedicated UWF dataset, and the evaluation results demonstrate that our method achieves competitive vessel segmentation perform
24#
發(fā)表于 2025-3-25 16:27:36 | 只看該作者
,Automated Optic Disc Finder and?Segmentation Using Deep Learning for?Blood Flow Studies in?the?Eye,/test dataset ratio: 70/30) were used in this study. The nnU-Net was trained to identify the optic disc just based on the LSFG composite and light intensity images. After training, we compared the difference between nnU-Net’s output and Expert 1 with the difference between Expert 1 and a second clin
25#
發(fā)表于 2025-3-25 20:31:00 | 只看該作者
,Multi-relational Graph Convolutional Neural Networks for?Carotid Artery Stenosis Diagnosis via?Fund the four kinds of clinical data, such as gender, age, sex and pid, to obtain four adjacency matrices. Finally, the feature vectors and the corresponding four adjacency matrices are input into the graph convolutional network layer respectively to obtain the prediction features, and then the predicti
26#
發(fā)表于 2025-3-26 01:32:55 | 只看該作者
,Pretrained Deep 2.5D Models for?Efficient Predictive Modeling from?Retinal OCT: A PINNACLE Study Remance and data efficiency of 2.5D techniques even further. We demonstrate the effectiveness of architectures and associated pretraining on a task of predicting progression to wet age-related macular degeneration (AMD) within a six-month period on two large longitudinal OCT datasets.
27#
發(fā)表于 2025-3-26 04:56:06 | 只看該作者
28#
發(fā)表于 2025-3-26 09:18:55 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:19 | 只看該作者
30#
發(fā)表于 2025-3-26 19:34:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
探索| 商河县| 永寿县| 安庆市| 泾川县| 阳原县| 文昌市| 台北市| 镇沅| 新昌县| 连城县| 赣榆县| 应用必备| 花莲市| 会泽县| 建始县| 黄浦区| 景洪市| 兴城市| 香港 | 道真| 平遥县| 江口县| 大悟县| 海伦市| 墨玉县| 新野县| 靖远县| 潮州市| 延边| 方城县| 怀宁县| 宁都县| 宜君县| 乐亭县| 开封市| 腾冲县| 酉阳| 札达县| 乌兰浩特市| 渝中区|