找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operators, Inequalities and Approximation; Theory and Applicati Binod Chandra Tripathy,Hemen Dutta,Bidu Bhusan Jen Book 2024 The Editor(s)

[復(fù)制鏈接]
樓主: 螺絲刀
21#
發(fā)表于 2025-3-25 04:24:54 | 只看該作者
Arzu Akgültal anterograde and concealed atrioventricular accessory pathways mapped and successfully ablated at the level of the atrioventricular annuli confirmed that these pathways are anatomically “short Kent-type” atrioventricular connections. They can be involved in paroxysmal orthodromic tachycardia or s
22#
發(fā)表于 2025-3-25 07:45:35 | 只看該作者
Sercan Kaz?mo?lu,Hemen Dutta,Erhan Denizitation and relevant electrocardiographic algorithms for identifying accessory pathway locations. Most published algorithms are not easy to understand, thereby not educational enough to the readers, and are difficult to remember. However, using a “pathophysiologic” approach, the reader may easily un
23#
發(fā)表于 2025-3-25 15:39:25 | 只看該作者
,Approximation Process of the Fuzzy Meyer-K?nig and Zeller Operators,We construct fuzzy Meyer-K?nig and Zeller operators and fuzzy post-quantum Meyer-K?nig and Zeller operators. We investigate their fuzzy Korovkin-type approximation results and inequalities estimating their approximations.
24#
發(fā)表于 2025-3-25 18:54:43 | 只看該作者
25#
發(fā)表于 2025-3-25 20:00:10 | 只看該作者
,On a New Subclass of?Bi-Univalent Analytic Functions Characterized by?,-Lucas Polynomial CoefficienIn this study, by using Lucas polynomials, subordination, and S?l?gean differential operator, we investigate the class . of bi-univalent functions. Also we examine .-Lucas polynomial coefficient estimates and Fekete–Szeg? inequalities for functions belonging ..
26#
發(fā)表于 2025-3-26 02:24:05 | 只看該作者
Industrial and Applied Mathematicshttp://image.papertrans.cn/o/image/702365.jpg
27#
發(fā)表于 2025-3-26 07:22:05 | 只看該作者
https://doi.org/10.1007/978-981-97-3238-8proximity point; convexity; signal processing; approximation theory; operator approximation; fixed points
28#
發(fā)表于 2025-3-26 09:16:06 | 只看該作者
29#
發(fā)表于 2025-3-26 15:51:30 | 只看該作者
,Best Proximity Point Problems in?G-Metric Spaces and?Its Applications,nt theorems for such kind of mappings in .-metric spaces. As a consequence of these results, we deduce certain new best proximity and fixed point results. Moreover, we present an example to illustrate the usability of obtained results. Our results generalize, extend and unify various results in the existing literature.
30#
發(fā)表于 2025-3-26 19:39:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海淀区| 河津市| 邯郸市| 越西县| 南城县| 商都县| 隆化县| 铁岭县| 怀宁县| 余江县| 南平市| 海安县| 海伦市| 黄冈市| 赤水市| 毕节市| 寿光市| 盖州市| 固原市| 临洮县| 镇坪县| 绥江县| 会同县| 开化县| 台中市| 湛江市| 新泰市| 讷河市| 柳河县| 峡江县| 临潭县| 得荣县| 兴义市| 广元市| 沛县| 巴林右旗| 宁强县| 获嘉县| 合作市| 疏附县| 铁岭市|