找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator and Matrix Theory, Function Spaces, and Applications; International Worksh Marek Ptak,Hugo J. Woerdeman,Micha? Wojtylak Conference

[復(fù)制鏈接]
樓主: Intermediary
41#
發(fā)表于 2025-3-28 16:16:12 | 只看該作者
42#
發(fā)表于 2025-3-28 22:05:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:28:25 | 只看該作者
Maximal Noncompactness of Singular Integral Operators on , Spaces with Some Khvedelidze Weights,. We consider the singular integral operator . with constant coefficients ., where . is the Cauchy singular integral operator over .. We provide a detailed proof of the maximal noncompactness of the operator . on . spaces with the Khvedelidze weights . satisfying .. This result was announced by Naum
44#
發(fā)表于 2025-3-29 07:03:02 | 只看該作者
45#
發(fā)表于 2025-3-29 09:47:50 | 只看該作者
46#
發(fā)表于 2025-3-29 11:39:43 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:03 | 只看該作者
On de Finetti-Type Theorems,uences of two-point valued exchangeable random variables is obtained by randomization of the binomial distribution. This result has since found several generalizations both in classical and noncommutative settings. In this paper, we discuss a series of recent results that extend de Finetti’s theorem
48#
發(fā)表于 2025-3-29 20:16:24 | 只看該作者
49#
發(fā)表于 2025-3-30 03:46:38 | 只看該作者
Conference proceedings 2024bert transform, small rank perturbations, spectral constants, Banach-Lie groupoids, reproducing kernels, and the Kippenhahn curve. The volume includes contributions by a number of the world‘s leading experts and can therefore be used as an introduction to the currently active research areas in operator theory.
50#
發(fā)表于 2025-3-30 05:23:57 | 只看該作者
Commuting Toeplitz Operators and Moment Maps on Cartan Domains of Type III,ators. This leads to a natural generalization of known results for the unit disk. We also compute spectral integral formulas for the Toeplitz operators corresponding to the Abelian Elliptic and Parabolic cases.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐都县| 鲁甸县| 定西市| 高台县| 藁城市| 女性| 巧家县| 河曲县| 古交市| 巴东县| 中牟县| 南平市| 涟源市| 武山县| 永安市| 中阳县| 阿拉尔市| 德阳市| 镇赉县| 泾阳县| 揭西县| 庄河市| 祁东县| 且末县| 云南省| 顺昌县| 措美县| 象山县| 银川市| 珲春市| 龙川县| 黑水县| 新竹市| 拉孜县| 梁河县| 曲麻莱县| 安达市| 光泽县| 九江市| 常州市| 河南省|