找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory and Differential Equations; Anatoly G. Kusraev,Zhanna D. Totieva Conference proceedings 2021 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: complicated
51#
發(fā)表于 2025-3-30 11:28:24 | 只看該作者
52#
發(fā)表于 2025-3-30 14:46:46 | 只看該作者
Inverse Problems in the Multidimensional Hyperbolic Equation with Rapidly Oscillating Absolute Termch to setting such problems is developed for the case in which additional constraints are imposed only on several first terms of the asymptotics of the solution rather than on the whole solution. This approach is realized in the case of a multidimensional hyperbolic equation with unknown absolute term.
53#
發(fā)表于 2025-3-30 20:11:35 | 只看該作者
,On the Brezis–Lieb Lemma and Its Extensions,hich the Brezis–Lieb lemma holds true. This gives also a net-version of the Brezis–Lieb lemma in .. for .?∈?[1, .). We discuss an operator version of the Brezis–Lieb lemma in certain convergence vector lattices.
54#
發(fā)表于 2025-3-30 22:04:38 | 只看該作者
Boolean Valued Analysis: Background and Results,l structures and mappings are given in tabular form. A list of some problems arising outside the theory of Boolean valued models, but solved using the Boolean valued approach, is given. The relationship between the Kantorovich’s heuristic principle and the Boolean valued transfer principle is also discussed.
55#
發(fā)表于 2025-3-31 02:10:49 | 只看該作者
,The Convergence of the Fourier–Jacobi Series in Weighted Variable Exponent Lebesgue Spaces,ient, and in a certain sense, necessary conditions on the variable exponent .?=?.(.)?>?1 ensuring the uniform boundedness of Fourier-Jacobi sums . (.?=?0, 1, …) with ??1?
56#
發(fā)表于 2025-3-31 07:37:32 | 只看該作者
57#
發(fā)表于 2025-3-31 10:08:02 | 只看該作者
58#
發(fā)表于 2025-3-31 15:20:44 | 只看該作者
Operator Theory and Differential Equations978-3-030-49763-7Series ISSN 2297-0215 Series E-ISSN 2297-024X
59#
發(fā)表于 2025-3-31 19:47:15 | 只看該作者
60#
發(fā)表于 2025-3-31 22:41:14 | 只看該作者
D. S. Klimentovense quantity of new knowledge on the genetic diversity of vegetables and the utilization of genetic resources, breeding methods and techniques, and on the development and utilization978-1-4419-2474-2978-0-387-30443-4Series ISSN 2363-8478 Series E-ISSN 2363-8486
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 01:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏南县| 鹿邑县| 普兰县| 阿瓦提县| 二连浩特市| 马鞍山市| 雅安市| 友谊县| 富蕴县| 鹿邑县| 库尔勒市| 永丰县| 墨竹工卡县| 孝感市| 温泉县| 苍山县| 湟中县| 临江市| 长沙县| 新晃| 汉中市| 兴城市| 罗田县| 玉溪市| 丰镇市| 长岛县| 内江市| 哈密市| 额尔古纳市| 无锡市| 莱西市| 菏泽市| 淮阳县| 晋江市| 莆田市| 贵溪市| 无棣县| 南丰县| 高安市| 伊春市| 庐江县|