找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics; Wolfgang Arendt,Ralph Chill,Yuri Tomilov Conference

[復制鏈接]
樓主: 教條
31#
發(fā)表于 2025-3-27 00:06:16 | 只看該作者
,Generation of Subordinated Holomorphic Semigroups via Yosida’s Theorem,. is the generator of a holomorphic C.-semigroup on a Banach space, bounded on .. Such estimates are of value, in particular, in approximation theory of operator semigroups. As a corollary, weobtain a new proof of the fact that . generates a holomorphic semigroup whenever ?. does, established recent
32#
發(fā)表于 2025-3-27 03:35:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:04:17 | 只看該作者
34#
發(fā)表于 2025-3-27 10:28:07 | 只看該作者
35#
發(fā)表于 2025-3-27 14:17:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:24:17 | 只看該作者
Dichotomy Results for Norm Estimates in Operator Semigroups,The results in this survey indicate that the quantitative behaviour of the semigroup at the origin provides additional qualitative information, such as uniform continuity or analyticity.
37#
發(fā)表于 2025-3-28 00:42:58 | 只看該作者
Convergence of the Dirichlet-to-Neumann Operator on Varying Domains,We prove resolvent convergence for the Dirichlet-to-Neumann operator on domains which are uniformly starshaped with respect to a ball, when the domains converge appropriately.
38#
發(fā)表于 2025-3-28 05:00:03 | 只看該作者
A Banach Algebra Approach to the Weak Spectral Mapping Theorem for Locally Compact Abelian Groups,We give a general version of the weak spectral mapping theorem for non-quasianalytic representations of locally compact abelian groups which are weakly continuous in the sense of Arveson, based on a Banach algebra approach.
39#
發(fā)表于 2025-3-28 09:06:21 | 只看該作者
Regularity Properties of Sectorial Operators: Counterexamples and Open Problems,We give a survey on the different regularity properties of sectorial operators on Banach spaces. We present the main results and open questions in the theory and then concentrate on the known methods to construct various counterexamples.
40#
發(fā)表于 2025-3-28 11:47:27 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永和县| 灵武市| 库尔勒市| 鄱阳县| 山阴县| 虹口区| 庆云县| 安阳市| 泰和县| 洛川县| 茶陵县| 房山区| 合川市| 天镇县| 聊城市| 青龙| 南平市| 合江县| 杭锦后旗| 赣榆县| 揭阳市| 泾阳县| 平谷区| 昔阳县| 鸡西市| 汶上县| 巩义市| 遵义县| 陕西省| 乌拉特后旗| 黄梅县| 麦盖提县| 驻马店市| 晋宁县| 盐津县| 祁阳县| 宁波市| 元氏县| 宜兰市| 台州市| 太原市|