找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics; Wolfgang Arendt,Ralph Chill,Yuri Tomilov Conference

[復(fù)制鏈接]
樓主: 教條
31#
發(fā)表于 2025-3-27 00:06:16 | 只看該作者
,Generation of Subordinated Holomorphic Semigroups via Yosida’s Theorem,. is the generator of a holomorphic C.-semigroup on a Banach space, bounded on .. Such estimates are of value, in particular, in approximation theory of operator semigroups. As a corollary, weobtain a new proof of the fact that . generates a holomorphic semigroup whenever ?. does, established recent
32#
發(fā)表于 2025-3-27 03:35:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:04:17 | 只看該作者
34#
發(fā)表于 2025-3-27 10:28:07 | 只看該作者
35#
發(fā)表于 2025-3-27 14:17:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:24:17 | 只看該作者
Dichotomy Results for Norm Estimates in Operator Semigroups,The results in this survey indicate that the quantitative behaviour of the semigroup at the origin provides additional qualitative information, such as uniform continuity or analyticity.
37#
發(fā)表于 2025-3-28 00:42:58 | 只看該作者
Convergence of the Dirichlet-to-Neumann Operator on Varying Domains,We prove resolvent convergence for the Dirichlet-to-Neumann operator on domains which are uniformly starshaped with respect to a ball, when the domains converge appropriately.
38#
發(fā)表于 2025-3-28 05:00:03 | 只看該作者
A Banach Algebra Approach to the Weak Spectral Mapping Theorem for Locally Compact Abelian Groups,We give a general version of the weak spectral mapping theorem for non-quasianalytic representations of locally compact abelian groups which are weakly continuous in the sense of Arveson, based on a Banach algebra approach.
39#
發(fā)表于 2025-3-28 09:06:21 | 只看該作者
Regularity Properties of Sectorial Operators: Counterexamples and Open Problems,We give a survey on the different regularity properties of sectorial operators on Banach spaces. We present the main results and open questions in the theory and then concentrate on the known methods to construct various counterexamples.
40#
發(fā)表于 2025-3-28 11:47:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大姚县| 西城区| 安福县| 沁源县| 延庆县| 屯留县| 伽师县| 景洪市| 诸城市| 湘西| 星子县| 铜川市| 天台县| 宁德市| 宁远县| 古交市| 广安市| 秀山| 鲁山县| 茶陵县| 山东省| 隆尧县| 德钦县| 高碑店市| 花垣县| 霍林郭勒市| 托克逊县| 疏勒县| 侯马市| 宁河县| 永寿县| 竹北市| 满洲里市| 山东省| 晋江市| 信阳市| 德庆县| 大悟县| 汉川市| 三亚市| 彭州市|