找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Extensions, Interpolation of Functions and Related Topics; 14th International C A. Gheondea,D. Timotin,F.-H. Vasilescu Book 1993 S

[復(fù)制鏈接]
樓主: affidavit
11#
發(fā)表于 2025-3-23 09:49:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:04:05 | 只看該作者
13#
發(fā)表于 2025-3-23 19:54:10 | 只看該作者
14#
發(fā)表于 2025-3-23 23:14:33 | 只看該作者
,A Method for Constructing Invariant Subspaces for Some Operators on Kre?n Spaces,, subspaces for a class of operators on Kre?n spaces known as weakly definitizable operators. This includes, among others, the definitizable selfadjoint and definitizable unitary operators. A simple proof of the existence of an orthogonal pair of maximal definite invariant subspaces for positive ope
15#
發(fā)表于 2025-3-24 04:56:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:20:36 | 只看該作者
Antitonicity of the Inverse and J-Contractivity, of positive invertible operators, i.e., given two such operators . and ., (?). ≤ . ? .. ≥ ... In this paper recent work by Shmul’yan [.] and the authors [.] on the extension of (?) to the case of selfadjoint invertible . and . is reviewed. Some of the results in [.] and [.] are here given different
17#
發(fā)表于 2025-3-24 12:40:11 | 只看該作者
18#
發(fā)表于 2025-3-24 17:15:52 | 只看該作者
The Kobayashi Distance between two Contractions,define the Kobayashi pseudodistance on the closed unit ball .. of .(.), where .(.) is the algebra of all bounded linear operators on the Hubert space .. The main result of the paper asserts the fact the Kobayashi pseudodistance is a true distance on the . of ... Some connections between Pick conditi
19#
發(fā)表于 2025-3-24 22:45:29 | 只看該作者
The Category of Quotient Bornological Spaces,how I arrived in spaces with a boundedness, then in quotient spaces..Exactness is important in algebra. In Functional Analysis, we use exactness. I describe an abelian category . which contains the category . of b-spaces and linear bounded mappings. Its objects are couples ..∣... Morphisms should be
20#
發(fā)表于 2025-3-25 00:43:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拜城县| 溆浦县| 水城县| 西华县| 上林县| 海原县| 日土县| 东乡县| 阿荣旗| 清新县| 临猗县| 马尔康县| 东阿县| 南平市| 成安县| 星座| 新余市| 土默特左旗| 永德县| 正阳县| 积石山| 澜沧| 时尚| 旌德县| 鹿邑县| 临潭县| 嵊泗县| 林周县| 绥芬河市| 布尔津县| 三门县| 青田县| 丰镇市| 寻乌县| 竹山县| 乡宁县| 海口市| 东港市| 鹤山市| 全州县| 海口市|