找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Commutation Relations; Commutation Relation Palle E. T. J?rgensen,Robert T. Moore Book 1984 D. Reidel Publishing Company, Dordrech

[復(fù)制鏈接]
樓主: 使沮喪
31#
發(fā)表于 2025-3-27 00:26:06 | 只看該作者
32#
發(fā)表于 2025-3-27 01:19:15 | 只看該作者
33#
發(fā)表于 2025-3-27 07:16:00 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:14 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:03 | 只看該作者
Exponentiation and Bounded Perturbation of Operator Lie Algebrasresent chapter contains two exponentiation theorems which are improvements upon results due to the co-authors. It also contains theorems on perturbations of Lie algebras of unbounded operators. These results are entirely new.
36#
發(fā)表于 2025-3-27 19:24:32 | 只看該作者
37#
發(fā)表于 2025-3-28 00:39:24 | 只看該作者
Rigorous Analysis of Some Commutator Identities for Physical Observablesommutation theory with several equivalent conditions introduced by Kato [Kt 1] in his discussion of the canonical commutation relations. We indicate that generalizations of Kato’s conditions can be applied to a number of other commutation-theoretic matters that play an important role in mathematical
38#
發(fā)表于 2025-3-28 04:01:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:01 | 只看該作者
The Finite-Dimensional Commutation Conditionetc. (Here A and B are endomorphisms of a dense domain D in a Banach or locally convex space E.) Below in Section 2A we distinguish several technically different ways in which this condition enters into the development. Section 2B presents examples of differential operators which satisfy the condition.
40#
發(fā)表于 2025-3-28 12:01:08 | 只看該作者
Domain Regularity and Semigroup Commutation Relationsnsional spaces E. or D for which the exponentials in (l) can still be interpreted reasonably in terms of other endomorphisms of these spaces. As is well-known (and essentially recapitulated in Chapter 2), the standard matrix arguments using rearrangements of power series apply equally well to bounded Banach space operators A, B.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孝义市| 双流县| 新晃| 汶川县| 横山县| 九寨沟县| 四子王旗| 宁阳县| 汉川市| 沂源县| 林甸县| 和硕县| 禹城市| 乌苏市| 樟树市| 濮阳县| 托克逊县| 淳化县| 靖西县| 循化| 庆云县| 施甸县| 德钦县| 海淀区| 嘉禾县| 广灵县| 百色市| 柞水县| 桃园市| 屯留县| 韶关市| 荃湾区| 临清市| 南江县| 九龙坡区| 太谷县| 红安县| 秭归县| 商水县| 绵竹市| 杭锦后旗|