找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Commutation Relations; Commutation Relation Palle E. T. J?rgensen,Robert T. Moore Book 1984 D. Reidel Publishing Company, Dordrech

[復(fù)制鏈接]
樓主: 使沮喪
31#
發(fā)表于 2025-3-27 00:26:06 | 只看該作者
32#
發(fā)表于 2025-3-27 01:19:15 | 只看該作者
33#
發(fā)表于 2025-3-27 07:16:00 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:14 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:03 | 只看該作者
Exponentiation and Bounded Perturbation of Operator Lie Algebrasresent chapter contains two exponentiation theorems which are improvements upon results due to the co-authors. It also contains theorems on perturbations of Lie algebras of unbounded operators. These results are entirely new.
36#
發(fā)表于 2025-3-27 19:24:32 | 只看該作者
37#
發(fā)表于 2025-3-28 00:39:24 | 只看該作者
Rigorous Analysis of Some Commutator Identities for Physical Observablesommutation theory with several equivalent conditions introduced by Kato [Kt 1] in his discussion of the canonical commutation relations. We indicate that generalizations of Kato’s conditions can be applied to a number of other commutation-theoretic matters that play an important role in mathematical
38#
發(fā)表于 2025-3-28 04:01:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:01 | 只看該作者
The Finite-Dimensional Commutation Conditionetc. (Here A and B are endomorphisms of a dense domain D in a Banach or locally convex space E.) Below in Section 2A we distinguish several technically different ways in which this condition enters into the development. Section 2B presents examples of differential operators which satisfy the condition.
40#
發(fā)表于 2025-3-28 12:01:08 | 只看該作者
Domain Regularity and Semigroup Commutation Relationsnsional spaces E. or D for which the exponentials in (l) can still be interpreted reasonably in terms of other endomorphisms of these spaces. As is well-known (and essentially recapitulated in Chapter 2), the standard matrix arguments using rearrangements of power series apply equally well to bounded Banach space operators A, B.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖南省| 彰化县| 九龙城区| 芷江| 象山县| 枣庄市| 乐陵市| 含山县| 土默特右旗| 浠水县| 常德市| 南川市| 南开区| 贵南县| 西充县| 西昌市| 西平县| 平昌县| 荆州市| 阜新| 西华县| 阿拉尔市| 德阳市| 双桥区| 开原市| 航空| 江津市| 阿勒泰市| 泸州市| 华坪县| 莲花县| 聂荣县| 江西省| 漾濞| 洮南市| 洛阳市| 基隆市| 乌拉特后旗| 南城县| 水城县| 武义县|