找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Calculus and Spectral Theory; Symposium on Operato Michael Demuth,Bernhard Gramsch,Bert-Wolfgang Schu Book 1992 Springer Basel AG

[復制鏈接]
31#
發(fā)表于 2025-3-26 20:57:29 | 只看該作者
32#
發(fā)表于 2025-3-27 02:49:34 | 只看該作者
33#
發(fā)表于 2025-3-27 09:13:17 | 只看該作者
Second Order Perturbations of Divergence Type Operators with a Spectral Gap,struct operators of this type with a spectral gap.We also report on some recent results of Alama et al. (1992) concerning spectral properties of divergence form operators .where . is a non-negative operator whose coefficients tend to zero at ∞. Here we ask for eigenvalues of . + λ., λ > 0, in a spectral gap of ..
34#
發(fā)表于 2025-3-27 09:31:04 | 只看該作者
35#
發(fā)表于 2025-3-27 15:13:19 | 只看該作者
36#
發(fā)表于 2025-3-27 20:09:35 | 只看該作者
37#
發(fā)表于 2025-3-28 01:12:47 | 只看該作者
38#
發(fā)表于 2025-3-28 03:53:24 | 只看該作者
,Spectral Invariance and Submultiplicativity for Fréchet Algebras with Applications to Pseudo-DifferConnected to the theory of pseudo-differential operators it turned out that for a perturbation theory [14] and for analytic operator functions [12] [17] [18] in these Fréchet algebras Ψ it is useful to consider the following classical properties I) The group Ψ. of invertible elements is open.
39#
發(fā)表于 2025-3-28 09:19:20 | 只看該作者
On the Weyl Quantized Relativistic Hamiltonian,This note discusses a general condition on essential selfadjointness of the Weyl quantized relativistic Hamiltonian and the path integral representation for its semigroup.
40#
發(fā)表于 2025-3-28 13:10:28 | 只看該作者
Spectral Asymptotics for the Family of Commuting Operators,Accurate spectral asymptotics for the family of com muting pseudo-differential operators are obtained. Some applica tions for highly accurate spectral asymptotics for operators with periodic Hamltonian flow is given.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
赤峰市| 扎兰屯市| 区。| 林口县| 襄城县| 淳安县| 项城市| 布尔津县| 永年县| 高密市| 福安市| 桓仁| 四平市| 龙江县| 满洲里市| 屯留县| 建德市| 广元市| 诏安县| 沅江市| 广西| 南宫市| 庆安县| 巫溪县| 旅游| 多伦县| 启东市| 湖口县| 通城县| 滦南县| 东辽县| 卓资县| 托克托县| 临邑县| 亳州市| 宁国市| 双辽市| 故城县| 静海县| 塔城市| 巧家县|