找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Algebras, Toeplitz Operators and Related Topics; Wolfram Bauer,Roland Duduchava,Marinus A. Kaashoek Book 2020 Springer Nature Swi

[復(fù)制鏈接]
樓主: 柳條筐
51#
發(fā)表于 2025-3-30 11:26:52 | 只看該作者
Twisted Dirac Operator on Quantum SU(2) in Disc Coordinateselds two twisted Dirac operators for different twists that are related by a gauge transformation and have bounded twisted commutators with a suitable algebra of differentiable functions on quantum SU(2).
52#
發(fā)表于 2025-3-30 14:31:40 | 只看該作者
Toeplitz Algebras on the Harmonic Fock Spaceal symbols behave quite similar in both settings, namely, the Fock and the harmonic Fock spaces. In fact, these operators generate a commutative ..-algebra which is isomorphic to the algebra of uniformly continuous sequences with respect to the square root metric. On the contrary, Toeplitz operators
53#
發(fā)表于 2025-3-30 19:50:08 | 只看該作者
Non-geodesic Spherical Funk Transforms with One and Two Centersh geodesic Funk transforms. We also show that, unlike the case of planes through a single common center, the integrals over spherical sections by planes through two distinct centers provide the corresponding reconstruction problem a unique solution.
54#
發(fā)表于 2025-3-30 21:46:09 | 只看該作者
55#
發(fā)表于 2025-3-31 01:57:44 | 只看該作者
Fractional Integrodifferentiation and Toeplitz Operators with Vertical Symbolse formulated as follows: given two bounded vertical Toeplitz operators . and ., under which conditions is there a symbol . such that .? It turns out that this problem has a very nice connection with fractional calculus! We shall formulate our main results using the well-known theory of Riemann–Liouville fractional integrodifferentiation.
56#
發(fā)表于 2025-3-31 06:40:21 | 只看該作者
57#
發(fā)表于 2025-3-31 09:40:19 | 只看該作者
58#
發(fā)表于 2025-3-31 15:20:02 | 只看該作者
Toeplitz Algebras on the Harmonic Fock Spaceerators with horizontal symbols is isomorphic to the algebra consisting of bounded uniformly continuous functions with respect to the standard metric on ., which, at the same time, is isomorphic to the ..-algebra generated by Toeplitz operators with horizontal symbols acting on the Fock space.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广元市| 张家港市| 荔浦县| 乌拉特中旗| 同德县| 正阳县| 台北县| 天柱县| 弥渡县| 伊吾县| 称多县| 五华县| 苏州市| 东乡族自治县| 左贡县| 利津县| 务川| 定安县| 乌兰浩特市| 五莲县| 巴楚县| 牡丹江市| 阿坝县| 盐山县| 景洪市| 额尔古纳市| 博爱县| 罗平县| 卓尼县| 缙云县| 博白县| 邻水| 张掖市| 扬中市| 上饶市| 确山县| 钦州市| 金门县| 高唐县| 普定县| 水城县|